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Summary

Water waves propagating from the deep ocean to the coast show large changes in their
profile, waveheight, wavelength and direction. The main challenge to simulate the essen-
tial wave characteristics is to model the wave speeds and nonlinear interactions. These
problems have been addressed since 1872 when J.V. Boussinesq tried to simplify the
Euler equations for irrotational, incompressible fluid from the full three dimensional wa-
ter wave problem to two horizontal space dimensions. Since then, many different types
of Boussinesq models have been designed. The quality of a Boussinesq model depends
very much on the accuracy of the dispersion. Dispersion is the depth-dependent relation
between the speed and the wavelength. It is a consequence of the modelling from 3D
to 2D. The relation can be exactly calculated for small amplitude waves, and is then
given by a non-algebraic relation. This is a source of many problems for most numerical
discretization methods if this relation has to be accurate from the deep ocean to the
shallow coast. Most Boussinesq models are derived using series expansions in ’small’ pa-
rameters as wave height and inverse wavelength, and prescribing a restricted wave regime
for which the model should be most accurate.

A completely different way of modelling became possible in the 1960’s. In 1967 Luke
formulated a variational principle, which can be transformed to an action principle for
the water wave problem. The equations for the critical points are a dynamic system
of equations in Hamilton form. This Hamiltonian formulation was given by Zakharov
in 1968, independent of the result of Luke. This clearly showed that the water wave
problem can be written exactly in terms of quantities (elevation and surface potential)
of two horizontal directions. In this thesis we will use this formulation to find so-called
Variational Boussinesq Models that are accurate as needed and furthermore easy to
implement in a numerical Finite Element code; in all approximations and discretizations,
the Hamiltonian structure remains attained.

The most important quantity in the variational formulation is the Hamiltonian, which
is the total energy, i.e. the sum of potential and kinetic energy. The potential energy can
easily be expressed exactly in the surface elevation. The kinetic energy is the squared
interior velocity, integrated at each instant over the fluid domain, with given fluid poten-
tial at the surface. Actually, related to Dirichlet principle, the kinetic energy functional
is minimal (only) for the desired incompressible fluid flow. Instead of solving (numeri-



X CONTENTS

cally) the Laplace problem for the interior potential (which would be the full 3D wave
problem), a consistent and explicit approximation of kinetic energy in the surface vari-
ables can be made by restricting the minimization to a subclass of fluid potentials. In
Klopman et al. [2010], a Boussinesq-type model has been derived by choosing as sub-
class the surface potential to which is added a linear combination of vertical profiles with
spatially dependent functions as coefficients. The minimization property of the kinetic
energy requires that these spatial functions have to satisfy a (linear) elliptic equation.
The vertical profile was chosen to be a parabola inspired by the parabolic shape function
in the classical Boussinesq equations.

In this thesis we will use so-called vertical Airy profiles functions, i.e. hyperbolic-
cosine functions which appear in the exact expression for harmonic waves of linear po-
tential theory. Using these functions we can get flexibility to improve the dispersion,
which for the parabolic profile is only valid for long waves. This improvement is based
on a method to use in an optimal way the parameters (wave numbers) in the vertical
Airy profiles so that broad-band waves such as wind-waves can be dealt with. The opti-
mal choice is again based on exploiting the minimization property of the kinetic energy.
However, to become practically applicable, we need information from the initial state, or
from properties of waves entering the fluid domain. This has as consequence that each
specific problem gets a tailor-made model, with dispersion that is sufficiently accurate for
all the waves under consideration. As is well-known, the underlying variational formula-
tion of our model makes a numerical Finite Element implementation most appropriate,
especially also because simple piecewise linear splines can be used since no higher than
first order spatial derivatives appear in the positive definite Hamiltonian. The quality
of our modelling is shown by results of simulations for various classes of broad-band
waves. Simulations of irregular wind waves are compared for various cases with recent
experiments by MARIN hydrodynamic laboratory. To test the performance of shoaling,
refraction and nonlinearity, simulations are compared with the classical Berkhoff experi-
ment. Finally we show simulations for realistic wind-waves in the complicated geometry
and bathymetry of the Jakarta harbour. The work in this thesis has been published in
international scientific journals and in proceedings of international conferences.



Samenvatting

Watergolven vertonen gedurende de reis van de diepe oceaan naar de kust grote ve-
randeringen in vorm, golfhoogte, golflengte en voortplantingsrichting. Om deze golven
te simuleren is de grootste uitdaging het goed modelleren van de golfsnelheden en de
niet-lineaire interacties. Deze problemen worden bestudeerd sinds 1872 toen J.V. Bous-
sinesq probeerde de Eulervergelijkingen voor rotatie-vrije en onsamendrukbare stroming
te vereenvoudigen van het volle drie-dimensionale golfprobleem naar een probleem in twee
ruimtelijke dimensies. Sinds die tijd zijn veel verschillende soorten Boussinesq modellen
ontworpen.

De kwaliteit van zo'n Boussinesq model hangt sterk af van de nauwkeurigheid van de
dispersie. Dispersie is de diepteafhankelijke relatie tussen de snelheid en golflengte van
een golf. Het is een gevolg van de modellering van 3D naar 2D. Deze relatie kan exact
berekend worden voor kleine golfhoogten, en wordt dan door een niet-algebraische relatie
gegeven. Voor de meeste numerieke discretizatiemethoden is dit de oorsprong van veel
problemen, zeker als de relatie nauwkeurig moet zijn van de diepe oceaan tot de kust. De
meeste Boussinesq modellen worden afgeleid met een ontwikkeling in kleine parameters
zoals golthoogte en de inverse golflengte, en met een specificatie van de golftypen waarvoor
de benadering het meest nauwkeurig moet zijn.

Een totaal andere manier van modelleren werd mogelijk in de zestiger jaren van de
vorige eeuw. In 1967 formueerde Luke een variatieprincipe dat omgewerkt kan worden
naar een actieprincipe voor de watergolven. De vergelijkingen voor de kritieke punten vor-
men een dynamisch systeem met Hamiltonse vorm. Deze Hamiltonse formulering werd,
onafhankelijk van Luke, in 1968 gegeven door Zakharov. Daardoor werd het duidelijk
dat het golfprobleem exact geschreven kan worden als een probleem in twee groothe-
den (namelijk de waterhoogte en de potentiaal ter plaatse van het wateroppervlak) die
slechts van de twee horizontale richtingen athangen. In dit proefschrift gebruiken we
deze formulering om zogenoemde Variational Boussinesq modellen af te leiden; modellen
die zo nauwkeurig zijn als vereist en daarnaast eenvoudig te implementeren zijn in een
numerieke Eindige Elementen code. In de modelbenaderingen en de discretizaties blijft
de Hamiltonse structuur gehandhaafd.

De belangrijkste grootheid in de variationele formulering is de Hamiltoniaan, gelijk
aan de totale energie, zijnde de som van potenti€le en kinetische energie. De potentiéle
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energie kan eenvoudig exact worden uitgedrukt in de waterhoogte. De kinetische energie
is het kwadraat van de snelheid, op elk moment geintegreerd over het vloeistofgebied,
bij gegeven potentiaal op het wateroppervlak. Opgemerkt kan worden dat, volgens het
principe van Dirichlet, de kinetische energie functionaal minimaal is (alleen) voor de
gewenste onsamendrukbare stroming. In plaats van het Laplace probleem in het in-
wendige gebied (numeriek) op te lossen hetgeen tot het volle 3D golfprobleem zou leiden
wordt een consistente en expliciete benadering gemaakt van de kinetische energie door
het minimalizeren te beperken tot een deelverzameling van potentialen. Door Klopman
e.a. [2010] werd zo een Boussinesq model gemaakt door als deelverzameling te nemen de
potentialen die de som zijn van de oppervlakte potentiaal en een combinatie van verti-
cale profielfuncties met ruimte-athankelijke coefficienten. De minimalizeringseigenschap
van de kinetische energie leidt dan tot een elliptisch systeem van vergelijkingen voor
de coefficienten. Als verticaal profiel werd een parabool genomen, zoals in de klassieke
Boussinesq modellen.

In dit proefschrift zullen we zogenaamde Airy-functies gebruiken; dat zijn functies die
optreden in lineaire potentiaaltheorie. Hierdoor is het mogelijk om de parameters van de
Airy functies op een optimale manier te kiezen, waardoor golven met een breedbandige
spectrum, zoals windgolven, goed berekend kunnen worden. De optimale keuze wordt
weer bepaald door de minimaliteitseigenschap van de kinetische energie. Om dit echter
praktisch toepasbaar te maken is informatie nodig van het begingolfveld, of van het sig-
naal dat de golven opwekt. Daardoor wordt voor elk probleem een op maat gemaakt
model ontworpen, waarvan de dispersie-eigenschappen goed zijn voor alle te beschouwen
golven. Zoals bekend maakt de variationele structuur van onze modellen het zeer goed
mogelijk om een implementatie met eindige elementen te maken; omdat geen hogere dan
eerste-orde afgeleiden in de functionalen voorkomen, kunnen zelfs eenvoudige stuksgewijs
lineaire functies gebruikt worden. De kwaliteit van onze modellering wordt getoond aan
de hand van simulatieresultaten voor golven met een breed-band spectrum. Simulaties
van windgolven worden vergeleken met nauwkeurige metingen van experimenten uit-
gevoerd op het MARIN. Shoaling, refractie en niet-lineariteit wordt gedemonstreerd aan
de hand van simulaties voor het klassieke experiment van Berkhoff. Tenslotte tonen
we simulaties van realistische windgolven in de haven van Jakarta. Alle resultaten zijn
gepubliceerd in internationale tijdschriften of in proceedings van internationale confer-
enties.



Chapter

Introduction

Summary

In this chapter, we start with a brief review of the challenges in the modelling of sur-
face water waves. Especially when dealing with broad-band waves, e.g. wind-generated
waves, the accuracy in dispersiveness and nonlinearity of a surface water wave model
becomes very important. Many wave models used in coastal engineering applications
are Boussinesq-type models. Since the idea was introduced in 1872 by m, the
main challenges still remain the same until now: the accuracy in dispersiveness and non-
linearity. In Section [[L2] we will review the development in improving these properties
since the beginning until now. Almost all these improved models are rather complicated,
e.g. contain higher-order spatial derivatives (at least third-order) and sometimes mixed
spatial-temporal derivatives. As a consequence, the complexity in the numerical im-
plementation becomes a serious problem, in particular for two (horizontal) dimensional
codes.

In this thesis we will study Boussinesq-type models that are derived via the variational
formulation for surface water waves. One of them is the Variational Boussinesq Model
(VBM) that was introduced by [Klopman et al! [2008, 12007, 2010]. In this model, the
vertical variations in the fluid potential are approximated by one or a combination of
a priori chosen vertical profiles with spatially dependent functions as coefficient. The
vertical profile can be a parabola (inspired by the parabolic shape function in the classical
Boussinesq) or a hyperbolic-cosine function which is based on the Airy linear theory. The
latter profile will be called the Airy vertical profile. The spatially dependent function has
to satisfy a (linear) elliptic equation. The resulting model is quite simple, e.g. the highest
spatial derivatives are of second-order and no mixed spatial-temporal derivatives are
needed. Moreover, since it is derived with a consistent approximation in the variational
structure, the resulting model is energy conserved and has positive Hamiltonian, i.e.
sum of potential and kinetic energy. Non-positivity of the Hamiltonian may lead to
instabilities. The derivation of the model in the framework of the variational formulation
will be described in Section and [C4
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The aim of the work for this thesis is to improve the accuracy in dispersiveness of the
VBM. This is needed for simulating broad-band waves, e.g. wind-generated waves. To
that end, we extended the approximation in the VBM using a linear combination of a
few Airy vertical profiles (up to three profiles). Moreover, since the Airy vertical profile
contains a wavenumber as input, the choice of this wavenumber can be optimized to
get the best possible dispersiveness. To that end, an optimization criterion to choose the
most optimal wavenumber is introduced in Section[I.4.3]l This criterion is a minimization
of the kinetic energy for a given influx signal (when we deal with signalling problems).
The combination of using a few Airy vertical profiles and applying the optimization
criterion gives a very significant improvement in the dispersiveness of the model for a
given initial signal.

The performance of a Finite Element implementation of the model (the numerical
implementation will be described in Chapter 2) for simulating broad-band waves will be
illustrated in Section [[Z4l In this section, the numerical simulations of the model are
compared with experimental data from MARIN hydrodynamic laboratory: a focusing
wave group and a freak wave experiment. The agreement between the simulations of the
model (with 2- and 3- vertical profiles) and the experiments are remarkably accurate. In
Section [[H] we describe the contents of the next chapters in this thesis.

1.1 Surface water wave modelling

Surface water waves, as we see in oceans, seas and lakes, are (in general) generated by
wind. The wind that blows above the water surface with certain speed, duration of
time and over a certain distance (fetch), strongly influences the generation of the wave.
Provided the fetch is long enough and the wind speed is constant, an equilibrium sea-
state is eventually reached. Such an equilibrium is called a fully developed sea with no
significant changes in size and characteristics of the wave. In the fully developed sea, the
propagation of the wave is then mainly influenced by the Earth’s gravity as a restoring
force.

The wind-generated waves usually have a chaotic (irregular) form. Mathematically,
this irregular form can be approximated as a sum of (infinitely) many wave compo-
nents, i.e. monochromatic waves, as in Fourier theory. This leads to the concept of
amplitude spectrum (see Chapter 3 of [Holthuijsenl [2007]). In Figure [T the narrowest
spectrum corresponds to a monochromatic wave (upper plot)7 a rather narrow spectrum
corresponds to rather regular waves (middle plot), and the wider (broad) spectrum cor-
responds to irregular waves (lower plot). This spectrum shows how the wave energy is
distributed over the frequencies. In middle and lower plot of Figure [[LJ| we use random
phases. Wind-generated waves have a spectrum as in the lower plot of Figure [[LIl Intu-
itively, modelling of such broad-band waves is more challenging than the regular waves
in the upper and middle plot of Figure [Tl

Understanding the characteristics of waves has been a challenge for wave modellers.
Some motivations for understanding the characteristics are as follows.

e How to reduce ship accidents due to unpredictable waves, e.g. extreme wave con-
ditions.
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Figure 1.1: Characters of waves (right part) based on the width of their spectrum (left part).

e How to optimize a harbour design by analyzing its response to average or extreme
wave conditions.

e How to analyze the response of offshore oil and gas platforms to extreme wave
conditions.

Using mathematical physics, modelling of surface water waves contributes to solve (at
least to understand) the problems above.

Water wave models can be classified into two categories, based on properties of the
waves to be considered:

Phase-averaged models: the wave conditions are described in average characteristics.
In this category, the energy spectrum is modelled, while the phase is considered to
be uniformly distributed between [0, 27]. As a consequence, the details of the time
series of the wave motion are lost. This model is typically used for studying the
generation of waves by wind on the ocean and the wave propagation from the open
sea to the coast.

Phase-resolving models: individual waves (wave components) in the energy spectrum
are resolved with their phases and amplitudes. This model is typically used for
studying wave propagation in a small area, such as in a harbour or near coasts.

Phase-resolving models can also be divided into two categories based on dimension of
variables in the model. The first category is the Three-dimensional (3D) wave model.
In this category, variables involved in the model depend on 3 dimensional coordinates,
e.g. as functions of (z,y,z). Since the model depends on the full 3D coordinates, the
computational effort is rather costly for solving large problems such as waves in a harbour.
Therefore, this model is usually used for studying small problems, e.g. the response of a
ship to colliding waves. The second category are the Two-Horizontal Dimensional (2HD)
models. In this category, vertical variations of the flow are approximated to eliminate
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the dependence on the vertical coordinate. Since a dimension reduction (from 3D to 2D)
is applied in this category, the computational capability increases. Therefore, this type
of model is more applicable for simulating wave propagation in larger domains, such as
waves in the coastal area.

Most of the 2HD phase-resolving models that are used in coastal engineering appli-
cations are Boussinesq-type models. This thesis focuses on the modelling of one variant
of Boussinesq model. In the following section, we will review the development of the
Boussinesq models and their main challenges.

1.2 Boussinesqg-type models

The main issue behind the modelling of water waves from the full 3D problem to 2HD
models is to reduce the computational cost by reduction of the vertical dimension while
preserving two important properties of water waves:

Dispersiveness is determined by the accuracy in the dispersion relation which connects
the angular frequency w = 27/T (T is the wave period) to the wavenumber k =
2 /X (X is the wavelength). This relation will be described in detail in Section
1.4.2)

Nonlinearity becomes important if the waves have large amplitude. Nonlinearity ex-
presses the interactions as energy exchange between wave components in the energy
spectrum.

The original formulation of the now-called Boussinesq models was introduced by Boussi-
nesq @] for wave propagation over a constant water depth. It is actually the first cor-
rection of the nonlinear shallow water equations to the weakly dispersive (with kh << 1)
and the weakly nonlinear (with a/h << 1) water wave model. Here, kh is the relative
water depth, where k and h are the wavenumber and the water depth respectively, and
a/h is the relative amplitude, where a is the wave amplitude. The original formulation
of Boussinesq was achieved by introducing a polynomial expansion of the vertical varia-
tion in the horizontal velocity. The formulas were expressed in terms of depth-averaged
velocity and were derived for low-order expansion by assuming a/h = O (% and
retaining terms of order O((kh)?). Since 1953, initiated by the work of ], the
modelling of the extended version of the original formula to higher order models received
much attention from wave modellers.

The popularity of Boussinesg-type models in coastal engineering applications started
by the works of [Mei_and Méhautd [1966], who extended the classical formula into variable
depth in 1D, and m M] in 2D. Peregrine presented the equations in alterna-
tive velocity variables, namely the horizontal velocity at the sea bed and at the still
water. The quality of these models was still quite poor both in dispersion and in non-
linearity, but these works initiated the first computer model simulation (in Pereerind
M) Since 1978 by |Abbott et all [1978] and followed by Madsen and Warren [1984]

and [Schaper and Zielke ﬂl%d], the focus of the applications of Boussinesq-type models
shifted from long waves (Solitary and Cnoidal waves) to nonlinear irregular waves.
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The applications of Boussinesq-type models were limited by the weak dispersion prop-
erty. Rather noticeable Boussinesqg-type models in the 90’s that triggered another de-
velopment of the ideas in improving the dispersion and nonlinear properties are the
enhanced Boussinesq model of Madsen et. all and Madsen and Sgrensen @],
and the extended Boussinesq model ofm |. Madsen et al @] used the idea
of M], who introduced the concepts of Padé approximant within differential
equations in the framework of conventional Boussinesq equations. This resulted in a new
set of low-order equations with dispersion characteristics corresponding to Padé[2, 2]. The
equations were expressed in depth-integrated velocity and later,

applied this idea for uneven bottom. The other Boussinesqg-type model is derived
differently by m who uses the velocity at a depth z, to be determined by
choice of a parameter a. He optimized the choice of z, to get the best possible disper-
sion relation. As it turns out @ = —0.39 (which corresponds to a depth z, = 0.531h)
gave the best dispersion relation for the model. The free coefficient was chosen to match
Padé[2,2]. Interestingly, for & = —0.3 this formula gave the same quality of disper-
sion relation as the classical Boussinesq and a = —0.4 for the Boussinesq-type model of
Madsen and Serensen ﬂL9_92]

The ideas behind the derivation of these Boussinesg-type models received more at-
tention in improving the quality of dispersion relation and nonlinearity by extending the
approximation in the power series of the vertical variation into higher order, see

1995], Madsen and Schiifferd [1998], [Agnon et all [1999], [Zod [2000] and [Kennedy et all
2001]. The most recent results of Madsen et all [2002, 12003] have high accuracy both in

dispersion and nonlinearity up to kh = 25. But the high order approximation introduces
high order derivatives and many terms in continuity and momentum equations. The
latest model of [Madsen et. all m, lZDDﬂ] included fifth-order derivatives to get the best
possible dispersion. As it turns out, the complexity in the numerical implementation
becomes unavoidable, and the complexity increases when the models are generalized for
2HD.

Motivated by the complexity of the higher-order Boussinesq-type equations, especially
in the higher order derivatives, Lynett and Liu ﬂZDDAa]] introduced a different approach
to obtain a higher-order depth-integrated model. Instead of employing a high-order poly-
nomial for the vertical distribution of the flow field, two quadratic polynomials are used
and matched at an interface that divides the water into two layers. They called this
method the two-layer approach. The optimized model showed good linear characteris-
tics up to kh ~ 6 while maintaining the maximum order of differentiation at three. In
ILynett and Liu ﬂ201)_4H], the two-layer approach is generalized to multi-layers by consid-
ering three, four, and five layers. The achievement in the quality of dispersion relation
is quite impressive: for three-layers the model is accurate up to kh ~ 17 and four-layers
up to kh = 30.

A rather different approach for deriving Boussinesq-type equations is via the varia-
tional formulation. Motivated by the complexity of high-order Boussinesq-type models,
Klopman et all ﬂ21)_05, 2007, lZD_ld] introduced a variational Boussinesq-type modelling
for describing long wave propagation from shallow to intermediate depth. They called
this model the Variational Boussinesq Model (VBM). In the framework of the varia-
tional formulation for surface water waves, the idea is to approximate the fluid potential
® (x,z,t) in the expression of kinetic energy with a sum of the surface fluid potential
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Figure 1.2: Comparison of Boussinesq-type models by Klopman. et all ,[ZQJ_(]], |Peregriné [196 1],
Madsen_and_Sorenserl [LZQQ], Nuwogil [LQ&?/ with the Airy linear theory dispersion relation (upper
left), ratio of the phase velocity of the models with the phase velocity of Airy linear theory as
functions of h/Lo (upper right) and relative depth kh(lower left), and ratio of the group velocity
of the models with the group velocity of Airy linear theory (lower right).

¢ (x,t) = ®(x,z=mn,t) and a multiplication of a vertical profile F (z) (to be chosen
a priori) and a spatially dependent function ) (x,t) as coefficient. The function 1) is
chosen in an optimal way by minimizing the kinetic energy function with respect to v,
which leads to a linear elliptic equation. InKlopman et all ﬂ2ﬂlﬂ], three types of vertical
profiles are suggested: a normalized parabolic profile, an Airy profile (hyperbolic-cosine
functions) and a power series profile, but mainly the parabolic profile (valid for rather
long waves) was used for simulations.

Compared to the other Boussinesq-type models, the VBM is relatively simple and
much easier for numerical implementation since the highest derivative in the equations is
just of second order. Furthermore, there are no mixed spatial-temporal derivatives. Since
this model is derived with a consistent approximation in the variational structure, the
resulting model is energy conserved and has positive Hamiltonian, i.e. sum of potential
and kinetic energy. Non-positivity of the Hamiltonian may lead to instabilities (see
11974], Broer et all [1976], Milded [1990] and [Yoon and Liu [1994] ). The higher-order
Boussinesq models previously introduced are non-Hamiltonian. In/Fuhrman and M
m, they added an artificial damping to keep the numerical model (high-order Bous-
sinesq) stable.
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Interestingly, by choosing a parabolic profile as the vertical profile, the VBM with
parabolic profile gives exactly the same quality of dispersion relation as the enhanced
Boussinesq model of Madsen and Sarensenl [1992] (regardless how the two models were
derived) and slightly less accurate than the model of Nwogil [1993] (with a@ = —0.39).
We illustrate the quality of various models in Figure[[.2l To that end, we use the relative
water depth kh and relative depth Dy = h/Lg where Ly is the wavelength. The shallow
water regime is usually associated with Dy < 25, the intermediate/transitional water
with 5z < D < 5 and the deep water with Dy > 1. In the upper left part of Figure [[2
the dlspersmn relatlon of Madsen and Sgrensen ﬂl&&ﬂ] Nwogu [1993], [Peregrine [1967],
Klopman et_al! ﬂ20_1d the VBM with parabolic profile) and the exact dispersion relation
(based on Airy linear theory given by (L21]) in Section [[L42) are compared. In the upper
right part the ratio of the phase velocity of the models with the exact phase velocity are
compared as a function of h/Lg. In the lower part of Figure [[2] the ratio between the
phase (left plot) and the group (right plot) velocities with the exact velocities are shown
as functions of relative water depth kh. All models (except [Peregrind [1967]) are able
to simulate waves propagation from shallow water to intermediate water with errors in
phase and group velocities less than 5%. The model of m has a good phase
velocity up to kh =~ 3 and the group velocity up to kh = 2.5.

The focus of this thesis is to improve the quality of the dispersion relation of the
original VBM of [Klopman et. al) ﬂ20_1d] for simulating waves with broad spectra, such as
focusing wave groups or irregular waves. To that aim, as suggested by

, the improvement can be achieved by taking more vertical profiles in the approx-
imation of the fluid potential ® (x,z,t) in the kinetic energy using a few Airy profiles
(in this thesis, up to three profiles). Furthermore, the choice for the wavenumber in the
Airy profile is obtained in an optimal way by minimizing the kinetic energy for a given
influx signal. This optimization criterion can also be applied for varying bottom. In
the previously mentioned Boussinesg-type models, the dispersiveness is measured by the
largest relative water depth kh until which a certain accuracy is achieved. This then
holds for any simulation in this interval. With the optimization criterion for the VBM,
instead of achieving a larger value of kh, the Optimized VBM (OVBM) will give the
highest desired accuracy in the dispersiveness for the waves that have to be simulated
for a given influx signal: the model (i.e. the dispersion) depends on the problem to be
solved.

Besides improving the dispersiveness of the VBM, for numerical implementation, we
choose the Finite Element Method (FEM) as a numerical solver. In|Klopman et al! [2005,
m m the model was implemented with a pseudo-spectral method on (regular)
rectangular grids. A limitation of this implementation is a lack of flexibility when dealing
with complicated domains such as harbours or complicated coastlines. Also, to reduce
the computational cost, the use of unstructured (triangular) grid in the FEM gives more
flexibility compared to, e.g. curvilinear meshes and nested grids. Besides this, since the
model was derived via the variational formulation, it is natural to choose the FEM as
the numerical implementation. This implementation will be described in Chapter

In Section [[L3] we first discuss the dynamic equations for surface water waves, fol-
lowed by an introduction of the variational principle for water wave modelling. Within
this framework, it can be shown that the principle of minimization of energy is equiva-
lent with the full 3D Laplace problem for water waves. Consistent approximations in the
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Hamiltonian can be introduced, while preserving consequences of the exact formulation,
e.g. energy conservation. By restricting the problem to a certain wave class, an approxi-
mation for the VBM will be introduced in Section [[L4l An optimization criterion for the
Airy vertical profile will be discussed in Section

1.3 Dynamic equations and Variational principle

We consider water as a fluid layer that is inviscid and incompressible with uniform mass
density p = 1 kg/m?. The fluid layer is assumed to be bounded below by an impermeable
bottom and above by a free surface, while horizontal directions run from —oo to co. At
the free surface, we assume there is no surface tension, no wind or other forces, so
the Earth’s gravity is the only restoring force to force back the free surface into its
equilibrium position. Furthermore, the flow of the fluid is assumed to be irrotational.
This is a common assumption for surface water waves.

We use the following notational conventions. We consider three dimensional space
Cartesian coordinate system, two horizontal directions x = (z,y), and vertical z-axis.
The gravitational acceleration g has direction opposite to the z-axis. The fluid region
is bounded below by an impermeable bottom at z = —h (x) and above at the surface
elevation 7 (x,t), where ¢ denotes time. The fluid velocity in the interior is denoted by
U. By assuming irrotational flow, where V x U = 0, a fluid potential ®(x, z,t) is related
to Uby U=V3d = (VP,0.P). Here, V is the horizontal gradient and 0, denotes the
partial derivative with respect to z and likewise J; with respect to time t¢.

By combining the incompressibility condition (V - U = 0) and the irrotationality
condition above, one get the Laplace equation for surface water waves. The govern-
ing equations and boundary conditions for idealized conditions mentioned above are as
follows:

V3-V3d =0, for —h<z<n (1.1)
V3® - N, =0, at 2= —h (1.2)
V3® - Ny =0in, atz=n (1.3)
1
5}@—1—5 |V3<I>|2+gn:0, at z =1 (1.4)

Here, normal direction vectors are used: N, = (—=Vh,—1) and Ny = (—Vn,1). The
equation in the interior () is the Laplace equation, which represents the continuity
equation. Equation (L2) represents the impermeability condition at the bottom. The
kinematic free surface condition is equation (3], stating that the fluid will remain below
the free surface 7. The dynamic boundary condition is equation (4] that the pressure
(described by the Bernoulli equation) at the free surface is constant. The governing
equations and boundary conditions above are usually called the full 3D surface wave
equations.

In the classical derivation of Boussinesg-type models (see m and Madsen
and Fuhrman M] for reviews), usually, the velocity potential ®(x, z,t) is represented
as a power series in the vertical coordinate, i.e.

P (Xv 2, t) = Ego(h + Z)n¢(n) (Xa t)
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where ¢(™) = %Zf |:—0. With this representation, a dimension reduction (3D to 2HD) is
achieved. This approximation is then inserted into the governing equations (([T]), while
also introducing velocity-type variables. High-order Boussinesq-type models usually refer
to how many terms in the power series are taken into account. This high-order expansion
leads to higher-order derivatives in a resulting Boussinesq-type model.

Instead of following the classical approximation of Boussinesqg-type models above, a
different approach via the variational principle can be applied to get a Boussinesg-type
model. This approach is motivated by the observation that the mathematical-physical
description of surface water waves has a Hamiltonian structure. This observation has
been made by [Zakharod [1968], Broel [1974] and Miled [1977] (see also Milded [1977)).

To that end, we will first introduce Luke’s variational principle for surface water
waves, then show that this variational principle is equivalent to a Hamiltonian structure.
m formulated an expression for the pressure as the Lagrangian £(®,n)

n
L(®,n) = —// /h {@(I) + % |V3<I>|2 +gz] dzdxdt (1.5)
tJx J—

which describes inviscid, incompressible homogeneous fluid, with irrotational flow. He
showed that the full 3D surface wave equations (1] - [[4)) can be obtained by vanishing
of the first variations of (LI with respect to ® and 7. More precisely, vanishing of the
first variation of (I5]) with respect to variations 6® in ® leads to

/t{/x /1 [0; (6®) + V3P - V3 (00)] dzdx} dt =0 (1.6)

Now, we apply Leibniz’s integral rule for the first term of (L.6))

n n
8t / 0ddz = / at (6(1)) dz + ((Sq)) |z:n3m + ((Sq)) |z:,hath
—h

—h

and Green’s theorem (integration by parts) for the second term of (6]

n n
// V3 - Vs (5<I>)dzdx:—// vg.v3q>(5q>)dzdx+/(6c1>) 8, 7",
x J—h x J—h x

Here, the lateral boundaries have been neglected. Then vanishing for all variations §®,
we obtain the Laplace equation (L)) in the interior, the impermeability condition at
the bottom (2] and the kinematic free surface condition (I3)). The dynamic boundary
condition ([4]) can be obtained by vanishing of the first variations of (L) with respect
to variations 47 in 7).

Now we will show the relation between the Lagrangian £ (®,n) (L3) and its Hamil-
tonian representation. To that end, we use the surface potential ¢(x,t) = P(x,z =
n(x,t),t) and the surface elevation n(x,t) as the canonical variables for the Hamiltonian
representation. Following [Miled |, the Lagrangian £ (®,n) (LT) can be reformulated

as
K 1
L (‘I)an) = - // / |:8t(1> + 5 |V3‘I>|2 —l—gz} dzdxdt
tJxJ—h

:/ S d0mdx— [, {7, 4 V5@ dzt-dg (o = 0*) }axat | (1.7)
. =0 [, |, ®dzdx
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by using Leibniz’s integral rule
n n
8t/ Pdz = / at@—i—qﬁam—i—@z:,hath.
—h —h

By dropping dynamically uninteresting terms, i.e. the volume integral ® itself and the
horizontal-space integral: [, 0; [, [", ®dzdxdt and [, [, $gh*dxdt respectively, the La-
grangian (7)) can be rewritten as

et = [ | [ wom dx—w (o] a (18)

Here, H(¢,n) is the Hamiltonian or the total energy. Just as in Classical Mechanics, it
is the sum of the potential energy P = % N gn?dx and the kinetic energy

K(¢,n) = min {K (®,7) |® = ¢ at z=n} (1.9)

1 n
) :5//h|v3<1>|2dzdx. (1.10)

Note that condition (L9) leads to the requirement of the fluid potential ® to satisfy the
Laplace equation in the interior (IIJ), the bottom impermeability condition (2] and
the condition ® = ¢ at the free surface. So definition (9] implies the validity of the
3D surface wave equations (LTI - [[33). Recapitulating so far, the Lagrangian £(¢, n) has
been represented in surface variables only, i.e ¢(x,t) and 7n(x,t). This concludes that a
dimension reduction (3D to 2HD) has been achieved.

Now, by taking variations of (L)) with respect to n and ¢, the Hamiltonian system
is found

with

where d4H and 6,H denote the variational derivatives of H with respect to ¢ and 7
respectively. This can be recognized as the canonical action principle, the generalization
of similar principles in Classical Mechanics to infinite dimensions with canonical variables

1 as 'position’ and ¢ as 'momentum’ (see van Groesen et al 1! [2010] and chapter 6.3 in

van Groesen and Molenaar |2 ﬂ_QQﬂ])

The potential energy P is already expressed explicitly in the surface variable . Un-
fortunately this is not the case for the kinetic energy. This is actually the essential
problem in the variational formulation for surface wave theory to achieve the dimension
reduction. Nevertheless, an approximate model can be obtained by taking an appropriate
approximation in the kinetic energy. This approximate model will share consequences of
the variational form, such as energy conservation.

Two extreme approximations, the Shallow Water Equations (SWE) and the Linear
(Airy) wave theory, can be obtained by taking specific assumptions when restricting
the waves to a certain wave class. The SWE can be obtained by assuming that the
wavelength is much larger than the depth of the water so the variations in the vertical
direction can be ignored completely. As a result, the dispersive effects are ignored. This
can be achieved by taking ® = ¢ in the expression of the kinetic energy (LI0). Inserting
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this approximation into the Hamiltonian equations ([II)) results in the Hamiltonian
equations for the SWE:

s (1.12)
O =—gn—I|Vo|~ /2

For the other extreme approximation, linear wave theory, it is assumed that the
bottom variations and the surface elevations are small compared to others dimensions.
As a result, all nonlinear effects are ignored, but the model has the exact dispersion
relation (see Subsection [L4.2)).

Notice that SWE ignores completely dispersive effects but is exact in the nonlinearity
(no assumption is made regarding the nonlinearity). Opposite to this, the linear wave
theory models the dispersion exactly but completely neglects the nonlinearity. In coastal
engineering applications, Boussinesg-type models are usually preferred above these two
‘extreme’ approximations since in their approximation, the dispersion and nonlinear ef-
fects are taken into account.

In the next section, we derive a Boussinesg-type model in the framework of the
variational principle: the Variational Boussinesq Model (VBM). This can be obtained by
restricting the wave problem to a certain wave class. Instead of achieving large value for
relative depth kh for the accuracy in dispersiveness as other Boussinesg-type models, the
resulting model will be optimized to have the best possible accuracy in dispersiveness for
a given wave problem. In other words, the optimized model will be case-dependent.

{am =V [(h+n) V|

1.4 The Variational Boussinesq Model

The motivation behind the modelling of the Variational Boussinesq Model (VBM) is
to construct a Boussinesg-type model that has a positive Hamiltonian and the result-
ing model has to be simple for numerical implementation, i.e. has low order spatial
derivatives and no mixed spatial-temporal derivatives. As introduced in

ﬂﬂm, 2007, M], this leads to the idea to directly apply a Ritz method for the vertical
structure of the fluid potential ®(x, z,t):

D(x, z,t) = Fo(2)o(x,t) + Fi(2)1(x,t) + - - + Far(2)ar(x,t)
= =0 Fm (2)Ym(x, 1) (1.13)

where F,,(z) are vertical shape functions and ., (x,t) are spatially dependent functions
that have to be determined. If this approximation is substituted directly into the kinetic
energy functional (LI0), the positivity of the Hamiltonian is achieved. The Hamilto-
nian system has now additional constraints: d,,,H =0 for m = 0,--- , M, where d,,, H
denotes the variational derivatives with respect to 1,,. Since in general, these addi-
tional constraints introduce time derivatives for all parameters 1,,(x,t) in the resulting
dynamical equations, the canonical structure of the Hamiltonian system ([LIT]) is lost.
However, by requiring only one term to be nonzero at the free surface z = n(x,t),
ie. Fy(z = niho(x,t) = ¢(x,t) and the rest to be zero: F,(z = n)m(x,t) = 0 for
m = 1,--- , M, the canonical structure of the Hamiltonian system ([II)) is regained.
Hence, Fy(z = n) = 1 and F,,(z = n) =0 for m = 1,--- , M are required to keep the
canonical structure (CII)).
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1.4.1 The VBM with multiple profiles
As introduced inKlopman et all [2005] for 1D model, Klopman et all M for 2D model

and more specific cases in [Klopman et_all ﬂ2ﬂlﬂ], the VBM can be obtained by approx-
imating the vertical structure in the fluid potential ® in the kinetic energy functional

(CITd). To that end, in order to construct a model with a positive Hamiltonian without
destroying its canonical structure, the fluid potential ® is approximated by:

D (x,2,1) & ¢ (x,1) + L Fom (237, h) Y (X, 1) =9+ F - ¥ (1.14)

where F' and W are vector functions. To keep the canonical structure of the Hamiltonian
(CII), the condition ¢ (x,t) = ® (x,z =n,t) has to be assured, and it is required that
Fpn|.=n = 0 for any m. The bottom impermeability condition ([2)) requires V3®- N, =0
with N, = —(Vh, 1) at z = —h. Here, we assume the bottom is slowly varying, so that
the requirement 9, Fy,|.—_p = 0 is sufficiently accurate.

The vertical profiles F;, have to be chosen in advance, while 1, is chosen in the

optimal way by minimizing the kinetic energy, with respect to ¥,,. In

, one parabolic vertical profile

(z+h)* = (m+h)°
(h+n)

is used. This is inspired by the parabolic shape function of the classical Boussinesq and
valid only for long waves (see Figure [[2). In this thesis, we will only work with the
hyperbolic-cosine functions

(2h + 2z +1n)
(h+n)

1 1
F® (z;n,h) = 3 =5 (= (1.15)

Fp (z3m,h) = SZ;}; EZ:LL E;ii;; -1 (1.16)

which are based on the Airy linear theory (see Subsection [[Z2]). This vertical profile
will be referred as Airy profile for the rest of this thesis.

Now, substituting the approximation of ® of VBM ([LI4) into the kinetic energy
functional (II0) results in

n
Kvbmzé// Vo4V (F- W) + (0. F - 0)? dzdx
xJ—h

n
=%/[/ |V¢+F-V\If+\II-VF|2+(8ZF-\I/)2dz]dx
x —h
1 " 2 2
zi/{/ Vé+F . VU + (5.F - 0) dz} dx (1.17)
—h

In the third line, we use the weakly-nonlinear variant of the VBM (as defined in Klopman
et al.[2005]) where the effects of VF = (0nFVn + O, FVh + 0y, FVky,) are neglected.
Taking this term into the approximation will produce the fully-nonlinear model, without
approximation for the nonlinearity. [Klopman et all ﬂl(l(ﬁ] argued that neglecting the
term 0, F'Vn will produce unsatisfactory performance. This was shown in the comparison
with the high-accuracy Rienecker and Fenton ﬂ@] when they used the VBM with
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parabolic profile. In all cases that we will deal with, the weakly-nonlinear model of the
VBM (using Airy profiles) is accurate enough to describe the nonlinear effects for cases
such as focusing wave groups, irregular waves, and freak-type of waves. In this thesis,
we therefore limit ourself to the weakly-nonlinear model (to be referred to as nonlinear
VBM in the rest of this thesis) and focus ourself to improve the linear dispersion of the
model.

For simplicity, we introduce matrices o and -y, and a vector S which have elements
that depend on the vertical profiles F;,

n n n
Q5 :/hFiFde; Yij :/hFi/F](dZ; 61‘ :/hFidZ (118)

The explicit formulas for these coefficients for F,,, the Airy profiles (II6) are given in the
Appendix of Chapter B Using this notation, the kinetic energy (LI7) can be rewritten
as

1
Kopm = 5/ [(h+n) IVo|* +2VeB - VU + VI - aVT + T - 7\1:} dx (1.19)

By substituting this expression into the Lagrangian (L)), we obtain

Lopm (¢, 10, Vm) = / {/ 0n — Hopm (9,1, ﬁ’m)}

where Hypm (¢, 1,1 ) is the approximate Hamiltonian for the VBM. Note that the new
approximate Hamiltonian H,p,, now also depends on v,,. Taking variations of Hypm
with respect to 7 and ¢, leads to the dynamic forms as in (CI]), and variations with
respect to 1, results in a system of linear elliptic equations:

o ==V [(h+n)V¢]-V-[3-VY]
Be =—gn—|Ve[* /2 (1.20)
=V [aV¥] +~4T =V [V

[Klopman et all [2005, 12007, 2010] used the ’velocity’ u (x,t)=V¢ rather than the

surface potential ¢. In this thesis, we will work with the surface potential ¢ (as in (L20)))
to reduce the size in numerical computations.

1.4.2 Linear dispersion relation

For linear waves of finite amplitude that propagate above a constant depth hg, the (linear)
dispersion relation, denoted by w = Q(k), connects the angular frequency w = 27/T,
where T is the wave period, with the wavenumber k = 27 /A, where X is the wavelength.
From the Airy linear theory for infinitesimal small waves, the solution for the velocity
potential ® is given by

(I)(X) _ /a(k) Cosgo(il(ikz)h))eik.xdk
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where k = (kz, k,) is the 2D wave vector with k = |k| and ¢ is the Fourier transform of
¢. By using this solution, the exact dispersion relation is given by

Qairy (k) = cok % with ¢o =/ gho (1.21)
0

where ¢ is the speed of long waves. An individual wave (one frequency) will propagate
with the so-called phase velocity (or wave celerity) which is defined as ¢ = w/k in 1D
and €, = cey with e, = k/|k[, in 2D, while a wave package will propagate with the
so-called group velocity (or energy velocity) which is defined as V' = 9Q (k) /Ok in 1D
and Zg = Ve in 2D.

Notice that the limiting cases of (L21I)) are cok for h — 0 (the shallow water limit)
and k+/g |k| for h — oo (the deep water limit).

In constructing a wave model, the first property that has to be investigated is the
dispersion relation of the model. This is because the accuracy in dispersion relation
(compared to the exact relation (LZI))), will affect other properties such as effects of
nonlinearity, shoaling, diffraction and refraction. In modelling water waves, many efforts
have been made to obtain models with accurate dispersion relation. One procedure to
obtain such model is to introduce polynomial expansions for the exact dispersion relation
(C21)) near a certain wavenumber k, e.g. k — 0. The resulting model is then transformed
back to the real space from Fourier space. But high-order polynomial expansions in &
(Fourier space) correspond to high-order spatial derivatives in real space, according to
the relation (ik)" <= (J,)". As a consequence, high-order polynomial expansions result
in high-order derivatives in the resulting model. Moreover, the dispersion relation of
the resulting model is usually only valid near a certain wavenumber, which is commonly
taken to be k = 0.

Now we will investigate the dispersion relation of the VBM. From (L20), the VBM
with multiple profiles has dispersion relation that (strongly) depends on the choice of the
vertical profile(s). The VBM-dispersion is given by

Dy (k) = /M 1T (o2 1) 8 (1.22)
0

Here we assume that for multiple profiles, all values of k., in the Airy profiles (ILIG]) are
different so that the matrix (ak? + ) is invertible. For one profile VBM, (22 reduces
to

_ (kB)?
Q’ubm (k) = Cok\/]. — m (123)

The short wave behaviour is given by

32
lim Qupm = coky\/1 — —
k—o0 ah

This limit is real and nonzero as a consequence of the Cauchy-Schwartz inequality

[/ fldz} /f2dz/ 12dz
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Figure 1.3: In the left figure are shown the ratio with the exact phase velocity of Airy linear
theory of the phase velocity of the VBM with parabolic profile (solid with circle), one Airy profile
with kh = 1 (dashed-dot), kh = 3 (solid with downward-pointing triangle), and kh =5 (solid
with square). The same in the right figure for the group velocities.

for any choice of f, so 4% < ah (Lakhturov et all [2012]).

The limit for long waves of the VBM is ¢ok for h — 0, just as in the Airy dispersion
relation.

Now, we will compare the dispersion relation of the VBM with one profile (L23) with
the exact dispersion relation (LZI]). Using the Airy profile (II6]) as the vertical profile,
for the specific value of k,, the dispersion relation of VBM (L22]) has the exact value as
in the Airy dispersion relation (CZI). As a consequence, it has the exact phase velocity
for k = Kp,. In Figure the ratio with the exact phase velocity of Airy linear theory
of the phase velocities of the VBM with one Airy profile with kh = 1, kh = 3, kh =5
and with parabolic profile are shown, while in the right, the ratio of the group velocities.
From these plots, it shows that the VBM with parabolic profile is only valid for long
waves (kh < 2.5). For the VBM with one Airy profile, the velocity errors become larger
for large value of kh and are only exact (in the phase velocity) at kh = kh.

As can be observed in Figure [[3] for k # k., the VBM with one Airy profile has
larger phase velocity compared to the exact one. This is actually true for any approximate
VBM and is a direct consequence of the minimization property of the kinetic energy as

in (T3)

1 n
K= min —// V3®|? dzdx (1.24)
D=¢ at z=n2 _h

where an exact formulation can be obtained when one can find an optimum value of ®
with constraint ® = ¢ at z = 7.

As stated in|[Lakhturov et all ﬂ2ﬂlﬂ], for computational reason, the number of vertical
profiles to be used in the VBM is desired to be as few as possible. Since we have the
freedom to choose the value of k,, for the Airy profile (LIG), this leads to the idea
to optimize the dispersion relation of the VBM to be as close as possible to the exact
dispersion relation. Our way to do so will be explained in the next section.
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1.4.3 Optimization of the vertical profiles

As shown before, for waves with a narrow band spectrum, e.g. monochromatic waves, the
choice for the wavenumber k., for the Airy profile (LI6) is clear to be the wavenumber
that corresponds with the frequency of the waves to be simulated. But waves with a
broad band spectrum, e.g. irregular waves, focusing wave groups, or freak-type of waves,
the choice is not so clear. Intuitively, we expect k,, to be (close to) the peak frequency
of the waves to be simulated, since these are the most dominant waves in the spectra. In
this section, we will show an optimization criterion to choose the optimum «,, by using
the kinetic energy minimization. It turns out that the optimal choice for k,, will be
far from the peak frequency of the broad band waves to be simulated. The optimization
criterion to be described here, is based on the idea in Lakhturov, Adytia and van Groesen

m and in [Lakhturov and van Groesenl [2010] for flat bottom. In this section, the idea

will be generalized for uneven bottom.

We will restrict to signalling problems. We simplify the problem to be linear and
a horizontal bottom; hereafter we will show the generalization for an application with
varying bottom. The kinetic energy expression in (L24)) can be rewritten in general form
as

K(0) =5 [ 100 de= o [lamao] a (1.25)

Here 2 is the operator that is associated with the dispersion relation Q(k) of a model,
¢ is the spatial Fourier transform of the surface potential ¢. Now let no(t) = n(xo,t)
be the influx signal given at position xg. For uni-directional propagation, the governing
equation is 9y = €27, and there is a relation between the spatial and the temporal Fourier
transform of the solution 7 (z,t). Let Q7! (w) = k denote the inverse of Q (k) = w. Now
we will relate the spatial Fourier transform of 7 to the temporal Fourier transform 7jp(w)

of the wave elevation 7y(¢). In uni-directional propagation it holds that

n(z,t) = /770 (k) e'Br= 200 g — /770 (w) (7 @r=wt) gy
Since dw = V (k) dk, where V (k) = 09 (k) /Ok is the group velocity, we conclude that

Mo (k) =V (k) 7o (w) (1.26)

where w and k are related via the dispersion relation w = Q (k).
For uni-directional waves, propagation of ¢ is given (in Fourier space) by 5}@5 =
—i§2 (k) ¢. Combining this fact with the second dynamic equation of the VBM ([20)

Orp = —gm, we obtain a relation between the initial surface elevation 79 and the initial
surface potential ¢q

o~

i (k) o (k) = giio (k) (1.27)

By utilizing the relation (L27)) and the relation between spatial and temporal Fourier
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transforms of ny (L26]), we can rewrite expression (L20) as

S ACICIRG

2 [ @V @) do

g

_ 5/3@)1/(@ d (1.28)

where S (w) = 7o (w) - 7§ (w) /27 is the power spectrum of the initial signal 7. This
shows that the kinetic energy expression can actually be rewritten in the form of the
power spectrum of the given initial signal that is ”weighted” with the group velocity. We
will use this expression to optimize the dispersion relation of the VBM with the Airy
profiles. As said, the kinetic energy for the exact dispersion will always be less than any
approximation of VBM, which is the consequence of the minimization property (L24]).
Utilizing this fact and the expression of the kinetic energy (L28)), we obtain as criterion
for optimizing the choice of k,, for the Airy profile(s) the minimization of the kinetic
energy Kypm (km) with respect to all possible &,

win [ — K <_mm{/‘s Umx%mm»—nx@de} (1.20)

Km Km

Here Viypm, (w, km ) and Ve, are the group velocity of VBM (that depends on &,,) and that
of the exact Airy dispersion relation respectively. This optimized variant of the VBM
will be called the Optimized VBM (OVBM).

Since the group velocity depends on the water depth, the generalization for varying
bottom of (29) is given by

i Ko (1) = Koo 1)) = i { [ 450 Wi G o ) = Vi (0 o}~ (130

So, for varying bottom the minimization has to be performed for at each depth. Notice
that the power spectrum S (w) will change during wave propagation by nonlinear inter-
actions and by bathymetry effects. But the value for k,, in the Airy profile (I.I6]) has
to be chosen a priori and (preferably) will not change during the wave propagation. For
applications that we will deal with, the change in the power spectrum has been neglected.

In Figure[[4] the quality of the dispersion relation, phase and group velocities of the
OVBM with one, two and three profiles are shown. The value of k,, are kK = 3.16 for
1-profile model, k1 = 2.78 and ko = 11.25 for 2-profile model, and k1 = 2.58, ko = 11.24,
k3 = 21.45 for 3-profile model. These values are obtained for a test case of a freak-type
of wave to be shown in the next section. In the upper left of Figure [[L4] the dispersion
relation of the models are shown. In the upper right and lower left of Figure [[L4l the ratio
of phase velocity of the models with the exact phase velocity are compared as functions
of h/Ly and kh respectively. In the lower right, the ratio of the group velocity of the
models with the exact group velocity as functions of kh are shown.

Compared to the previous Boussinesg-type models m, Madsen and
Sorensen [1992] and Nwogu [1993]) that were shown in Figure[[2, the quality of dispersion
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Figure 1.4: Comparison of the VBM with parabolic profile (solid with circle), the Optimized
VBM with one (dashed-dot), two (solid with square), and three profiles (solid with downward-
pointing triangle) with the Airy linear theory in dispersion relation (upper left), the ratio of
the phase velocity of the models with the phase velocity of Airy linear theory as functions of
h/Lo (upper right) and relative depth kh (lower left), and the ratio of the group wvelocity of the
models with the group velocity of Airy linear theory (lower right).

relation of the OVBM multiple profiles is much improved, i.e. the relative error (compared
to the Airy theory) of the phase and group velocities are very small (up to 0.5% for two
profiles and up to 0.02% for three profiles). Notice that the flexibility to choose the
number of vertical profile functions and the possibility to optimize the vertical profiles
with ([30) means that the OVBM is case-dependent. In the OVBM, the model is
optimized to give the best possible dispersion relation properties over the kh interval
depending on the initial signal of the problem. This is different than other Boussinesq-
type models that are mentioned previously in which the accuracy of these models is
determined by the value of kh that can be achieved to obtain a certain the accuracy in
dispersiveness for all simulations.

The performance of the 1D-OVBM for horizontal flat bottom will be illustrated in
the next section. In Chapter [3 an application for varying bottom will be shown. In
Chapters @ and [B] the performance of the 2D-OVBM will be presented.
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Figure 1.5: The initial signal (left plot) and the amplitude spectrum (right plot) of the Focusing
Wave Group experiment by MARIN.

1.4.4 Broad band test-cases

In this section we show the performance of a Finite Element (FE) implementation of the
Optimized Variational Boussinesq Model (OVBM). The numerical implementation will
be described in detail in Chapter 21 Simulations of the FE-code of OVBM will be com-
pared with two available experiments of waves with rather broad spectrum: a Focusing
Wave Group (to be referred as FWG) and a freak-type of wave. Both experiments were
conducted at MARIN (Maritime Research Institute Netherlands) hydrodynamic labora-
tory in Wageningen, The Netherlands, in a wave tank with 200 m length and 1 m of
water depth.

The FWG is an experiment, with MARIN test number 101013, that was made for
investigating wave focusing where short waves are generated before long waves. This
experiment is designed in such a way that at a certain point, where the long (faster)
waves catch up with the short (slow) waves, the waves collide and form a very high wave.
The wave was generated by flap motion at = 0, and measured at zp = 10 m and
r1 = 50 m. The measured elevation at xg is taken for numerical simulation as influx
signal. Position 21 = 50 m was designed to be the location where the waves are focused.
The signal and its amplitude spectrum of this experiment at xy are shown in Figure
As seen, the spectrum of this wave is very broad. It turns out that using only one Airy
profile function is not accurate enough to accommodate all short frequencies waves in

the initial spectrum (see [Lakhturov, Adytia, and van Groesen [2012]).

In Figure [[LG we show the comparison of the signals at the focusing point of the
OVBM with one (left plots) and two (right plots) profiles with value of k,, that are
obtained by using the kinetic energy minimization (L29): x = 3.27 (corresponds to 0.9
Hz) for the 1-profile model, and k1 = 2.73, ko = 5.25 (corresponds to 0.43 Hz and 0.83
Hz) for the 2-profile model. In the upper part of Figure [[LG] the linear simulations of
OVBM are shown, while in the lower part, the nonlinear simulations are shown. The
contribution of the short (high frequency) waves are very important in this experiment.
The result of OVBM with one profile is rather poor. Although the optimal value k = 3.27
(corresponds to 0.8 Hz) is already far from the peak frequency (0.61 Hz), the errors in
the speed and contribution of the shorter waves are still too large. As a consequence, the
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Figure 1.6: Comparison of the linear (upper part) and nonlinear (lower part) simulations (solid
lines) with the experiment of the Focusing Wave Group by MARIN (dash line). The left part is
the result of OVBM with one profile, and the right part is with two profiles.

maximal amplitude cannot be reached. While using two profiles, the error in phase and
group velocities are much smaller than for the OVBM with one profile and the maximum
(focusing) wave can be represented more accurately.

The other test case is a freak-wave. Freak waves (also called extremes waves, rogue
waves, giant waves, monster waves) are unexpected large waves that suddenly appear
in a relatively mild background wave field. It is called a freak wave if the ratio of the
waveheight to the significant waveheight H,;, is more than 2 to 2.2 (Haved [2004]). The
significant waveheight Hy;, is the mean of the highest one-third of waves in the wave
record, usually calculated as 4 times the standard deviation of the surface elevation 7.
One famous freak wave that has been recorded in nature by a measurement instrument
is the Draupner wave or the New Year Wave; the wave was captured at the Draupner
platform in the North sea off the coast of Norway on January 1, 1995. The maximum
recorded waveheight is close to 26 m which is more than 2.2 times the significant wave-
height (see Haver and Andersen [2000]).

The recorded wave was reconstructed at MARIN for a laboratory experiment, with
MARIN test number 204001. The wave was generated at x = 0 m and measured at
several positions £ = 10 m, 20 m, 40 m, 49.5 m, 50 m and 54.5 m. The highest wave
was observed at position £ = 50 m. The measured signal and its amplitude spectrum at
2 = 10 m are shown in Figure[[.7l Notice that this wave has a very broad spectrum, even
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Figure 1.7: The initial signal (left plot) and amplitude spectrum (right plot) of the New Year
Wave experiment by MARIN.
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Figure 1.8: The normalized amplitude spectrum (solid line, left hand azis) of the New Year
Wave at x = 10 m is plotted together with the group velocity error (solid line with plus sign, right
hand azis) and the phase velocity error (solid line with circle, right hand axis) as functions of
frequency [Hz]. At the top left for the 1-profile model with k = 3.16 (corresponds to 0.88 Hz), at
the top right for the 2-profile model with k1 = 2.7, ke = 11.24 (corresponds to 0.82 Hz and 1.67
Hz) and at the lower for the 3-profile model with k1 = 2.58, ko = 11.24, k3 = 21.44 (corresponds
to 0.8 Hz, 1.67 Hz and 2.3 Hz).
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Figure 1.9: The comparison of the experiment of The New Year Waves by MARIN (dashed
line) with simulations (solid lines) of the OVBM with one (first row), two (second row) and
three profiles (third row), the MIKE21 BW (fourth row), the AB-code (fifth row), at x = 50 m
where the highest wave was observed.
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broader than the FWG that was shown in Figure[[Lil One can expect that the simulation
with one profile will not be sufficient. This can already be anticipated from the plots
in Figure of the velocity errors of the OVBM with one (in the upper left plot), two
(in the upper right plot) and three profiles (in the lower plot). The choices of k,, in
these plots are obtained by the optimization criterion in (L29). The optimum values
Km Wwere given in Section Using these optimal values, the quality of dispersion
relation, phase and group velocities were shown in Figure [[4l Using one profile, the
velocity errors are quite large for the main frequencies of the waves, while with two and
three profiles the errors are 10 and 20 times less, respectively. Therefore, to obtain good
results for the New Year Wave simulation, two or three profiles are needed.

In Figure [L9 we compare the measured signal at position x = 50 m with the sim-
ulations of the OVBM with one (first row), two (second row), three profiles (third row)
and with two other codes: MIKE 21 BW (fourth row) and the AB-code (fifth row).
MIKE 21 BW (Im, by DHI software) is a commercial package that uses the ’en-
hanced’ Boussinesq model of Madsen and Serensern ﬂl&&ﬂ] The quality of this model
was shown in Figure[[.2l The AB-code is based on the AB-equation that was introduced

in lvan Groesen and Andonowati [2007]. The AB-equation is a uni-directional model

(originally) for flat bottom with exact dispersion in first and second order. This model

has been extended for uneven bottom as the ABvar (van_Groesen and Andonowati [2011]
and [van_Groesen and van der Kroon [2012]). As expected, MIKE 21 BW and the OVBM

with one profile cannot capture the maximum wave since they are poor in the dispersion
relation. The OVBM with three profiles performs slightly better compared to the OVBM
with two profiles. This is understandable since the phase and group velocities for the
OVBM with three profiles is twice more accurate than the OVBM with two profiles, and
20 times more accurate than the OVBM with one profile model as can be seen in Figure
1.3

1.5 Contents

In the previous sections, the development of Boussinesq-type of models has been de-
scribed. This was followed by the derivation of the VBM in the framework of a varia-
tional principle, and the description of an optimization criterion for the choice of vertical
profiles of the VBM. The performance of a Finite Element implementation of the OVBM
was shown for simulating broad band waves above a constant bottom. In this short
section we present the contents of the rest of this thesis.

In Chapter 2 we will give details of the numerical implementation of the model,
together with technicalities regarding the boundary conditions, e.g. the fully reflective
(hardwall) boundary condition, damping or absorbing boundary condition, and also an
internal influxing method for both the 1D and 2D OVBM. To broaden the applicability
of the model, we use the Finite Element Method (FEM) for numerical implementation
rather than the pseudo-spectral method that was used in the previous variant of the VBM
(Klopman et all ﬂl(l(ﬁ, 2007, M]) Furthermore, especially for the 2D applications
where the geometry is usually very complex, e.g. harbour geometry or coastline for a
tsunami simulation, the use of an unstructured grid in the FEM is very helpful.

Chapter Blis a published paper of the 1D Optimized Variational Boussinesq Model for
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varying bottom (Adytia and van Groesen [2012]). The paper describes the simulations

of regular bichromatic waves and irregular waves that propagate above a sloping bottom
where experimental data are available from MARIN hydrodynamic laboratory.

Chapter [ is an extension of a published paper dmwﬂllﬁrgfﬁﬂ ﬂ2_0_]_1|]),
where the performance of the 2D FE implementation of the VBM is tested against the
shoaling experiment of [Berkhoff et all M] This experiment is well known for testing
the ability of a code to represent refraction, diffraction and shoaling of nonlinear periodic
waves.

In Chapter B the applicability of the 2D OVBM for simulating regular and irregular
waves in the harbour of Jakarta (Pelabuhan Tanjung Priok) in Indonesia will be shown.

Finally, in Chapter [} conclusions and outlook for future work will be summarized.




Chapter

Numerical Implementation

Summary

This chapter describes in Section 2] a numerical implementation for the Optimized
VBM that was derived in Chapter [[I Consistent with the derivation of the model via
the variational formulation, the Finite Element Method (FEM) is used for the spatial
discretization. Since the highest spatial derivatives in the Lagrangian of the model are
of the first order (second order in the equations), standard linear spline basis functions
will be used. The resulting matrix system is then solved by using a Runge-Kutta time
integrator for the dynamic system and an iterative method for solving the elliptic system.

In the implementation of the model, several types of boundary conditions will be used.
The fully reflective (hard wall) boundary conditions will be shown to be the 'natural’
boundary condition in the variational sense of the model. To absorb outgoing waves, a
sponge-layer type of boundary will be implemented in the model. Also, since we mainly
deal with signalling problems, an internal influx technique will be described in Section
Several cases for testing the combinations of these boundary conditions will be shown
at the end of this chapter.

2.1 Variational formulation and Finite Element im-
plementation

As described in Chapter [0, the VBM is derived via the variational formulation. For
numerical implementation of the model, several types of boundary condition need to be
imposed. To that end, we first derive the natural boundary condition of the model. More
precisely, recall the Lagrangian for the VBM

Lobm (777 o, wm) = / [/ $0en — Hobm (¢7 s wm) dxdt (2'1)

t
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with Hopm = P + Kybm, With Kypy, defined in (LI9). As stated in the previous chapter,
vanishing of the first variations of (21I) with respect to variations d¢ of ¢ and 7 of n lead
to the dynamic equations, while vanishing of the first variation with respect to variations
O0W of U = [1h1, 99, ..0bN] leads to a system of elliptic equations. These are given by

/t { / {0m (56) — [(h+ 1) VOV (56) + V (69) 5 - W]}dx} Q=0 (22)

/t{/x {¢8t (6n) — {gn+ % |V¢|2} (677)} dx} dt=0 (2.3)
/t{/x {8V¢ -V (6¥) +aVV -V (6¥) + 7P - (5\1,)}dx} dt =0 (2.4)

The first variations above are called the weak form of the VBM. Now, by applying
integration by parts in the second and third terms of (Z2), in the first term of (23]), and
in the first and second terms of (2Z4]), we obtain

/t{/{c?m—kv. [(h+n)Vo+5-VU]}(d¢)dx + By (¢, \I/)}dt—o (2.5)

/{/ [_‘M’ B <g" +3 'W"Qﬂ (6n) dx+ By <¢>>} dt=0  (26)
/t{/x{—V. BV + aVV] +~U} - () dx + Bs (¢, \I/)}dt —0 2.7)

where By (¢, V), By (¢) and Bs (¢, U) are boundary terms

By (6.0) = — /8 (60) () Vot 5+ VU] nddX

By (¢) = 6T¢(577) doT

Bs (¢, W) = /6 . (00) - [8V¢ + aV¥] .0 dOX

Here, 0X and 9T denote the boundary in space and in time respectively. The vector
n= (ny,n,) is the outward normal vector. Bs is a dynamically uninteresting term and
will be neglected. Since the weak forms should vanish for all variations of d¢, dn and JW¥,
we obtain the system of PDE as in (L20) with natural boundary conditions

[(h+n)Vo+3-V¥].n=0
BV +aV¥].n=0
For illustration, we write the natural boundary conditions above for the VBM with 1-
profile as
(ht+n) B || Vo | _
[ 3 o ve |~ 0 (2.8)

The natural boundary conditions above can only be satisfied if (b +n) a— 32 = 0 or if V¢
and Vi) vanish. But the first condition is not satisfied for both the parabolic (ILI5) and
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Figure 2.1: Illustration of the linear spline basis functions in 1D (left) and 2D (right).

the Airy profile (II6]), which implies that V¢ and Vi) should vanish. This condition is
actually the fully reflective (hard wall) boundary condition which requires the horizontal
velocity U = V& = V¢ + 'V to vanish at the boundary. This shows that vanishing of
the first variation of ([2I]) with respect to ¢, n and v, is equivalent with the PDE of the
VBM (L20) with the fully reflective boundary condition (Z8]).

Now we show the procedure for the numerical implementation of the model. Directly
from the Lagrangian ([Z1), it is possible to obtain a consistent numerical discretizations
for the solutions ¢,  and ,,. The solutions will be approximated by superpositions of
chosen basis functions {T; (x)}_; as

n(x,t) = X n: (8) T (x) =7 (t) - T'(x)
¢ (x,t) = B0 (1) T; (x) = 6 (1) - T (x) (2.9)
v (Xat) = [1/)1 (Xv t) an (Xv t) y ey wN (Xat)]

Q

[(Eis v () T (x

~—

B2, () Ti (%) 5o iy 9n, () T3 (x)] = ¥ (x,7)

where 77, ¢, ¥ and T(x) are vector functions. Here, we use the simplest basis functions
in the FEM which are the linear spline basis functions as illustrated in Figure 2] for
1D (left plot) and 2D (right plot). It is possible to use these basis functions since the
highest spatial derivatives in the Lagrangian () are of first order. For 1D FEM, the
expression of these basis functions {7; ()}, is given by

%, if, z € [xz'—hxi]
Ti(x) = § 75—, if @ € [zi, 2i14] (2.10)
0, else

For an equidistant grid with spatial grid size Az, the formula above can be rewritten as

T, (m)—max{l— |x;;’“|,o} (2.11)

The formula for 2D basis functions will be described in Appendix 2A.
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Now we substitute the approximations in (29]) directly into the Lagrangian (2.1]) and
obtain

/ PpOndx ~= 3; j¢in; M; ;=M - O47]

for the first term in (21]). Here M is the so-called mass-matriz, with elements
Mi’j = / Ti (X) Tj(X)dX.
X
7; denotes the derivative of n; with respect to time ¢. The second term in (2] results in

1
Hobm (6,1, V) = 3 /[gn2 +(h+mn) |V<;b|2 +2V¢B - VU + VU - aVV¥ + U - yU]dx

1
2
= Hvbm,(¢7 1, 2)

where D and A are so-called stiffness-matrices with elements

~ AV -V +-GY -V

N —
N =

1. - _ _
gMﬁ-ﬁ+§qu-¢+H3(ﬁ,qb)+B-\I/+

Dy = / h(x) VT (x) - VT (x) dx
Ay = [ @l VT (- VT (x) dx
respectively, G is the matrix with elements
Giy = 10T (0T, (x)ax
B is the column vector
B = [B(5)6, B (82) 6, B(By) 3] , with B (5;) = / BVT (x) - VT (x) dx
and H; (7, 3) is the nonlincar cubic term

_ 1 .
Hs (7,0) = §Ei,j,k77i¢j¢kcijka with Cyjp, = / T (x) VT (x) - VT (x) dx
Now the Lagrangian of the VBM (2.I]) becomes a Lagrangian with vector state variables
(61, %)
£(6.0.9) = [ [M3- 01~ Fun (5.7.9)] s (212)
t

Vanishing of the first derivatives of ([Z12) with respect to ¢ and 7 results in the Hamil-
tonian equations as the matrix system

Matﬁ = 8¢_§Hvbm = D& + b (77; &) +B (6) 4 (2'13)
Myp = —0;Hypm = —gM e — v (9) (2.14)
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where b (77, é) and v (qg) are column vector with elements
b (6.71) = Og, Hobm = Zi,6m:0xClijie

- _ 1
0; (@) = Oy, Hypm = §Ei,k¢i¢kcjik

Also, vanishing of the first derivative of (212 with respect to W results in an additional
matrix system of linear elliptic equations from Oy Hypm = 0

A+G]¥=-B (2.15)

The matrix system (ZI3),(ZT4) and ZI5) can also be obtained by the so-called
Ritz-Galerkin method. In this method, we first obtain the weak formulation of the VBM
equations (C20) by multiplying with arbitrary test functions and then integrate over
the domain of computation. The resulting weak formulations are (Z2]), 23)), and (24]).
By integrating by parts and substituting the approximate solutions (29), we obtain
equivalent results as (Z.13), (Z14) and T3] with fully reflective boundary condition as
the natural boundary condition.

Recapitulating so far, we have discretized the VBM equations in space using basis
functions {T; (x)}f\[=1 This discretization results in the ODE-system (Z13), (2I4) and
[2I3) which can be solved according to the following algorithm:

1. For an initial value problem, for given initial conditions 79 = 7 (¢t = 0) and o =

¢ (t =0), we calculate/update the coefficients «, 5 and ~ given by (IJ]), then
calculate ¥y by solving (ZIH]).

2. By using the initial conditions 79, ¢9 and the resulting ¥; (from the elliptic system),
we solve the dynamic matrix system (ZI13)) and (ZI4) by using a time integrator.
Here, we choose Runge-Kutta formulas of order 4 and 5 (or ODE45 in MATLAB).

3. These steps can be repeated until the desired end-time.

Note that for multiple vertical profiles and a large size of the spatial discretization,
the elliptic matrix system (ZI8]) can become very large. But since we use local basis
functions as ([ZI1), the resulting matrix (A + G) in 215 is very sparse. Also, since
the VBM has positive Hamiltonian, this matrix is symmetric and positive. Therefore,
an iterative method such as preconditioned conjugate gradient method can and will be
used. In general, the solution for the elliptic system will only take 2 to 10 iterations,
since we have a good initial guess of ¥ from the previous time step. Overall, for the
applications in this thesis, the time to solve the elliptic system takes 20% to 40% of the
total computational time.

For the 1D numerical implementation of the VBM we use an equidistant grid. For
the 2D implementation, an unstructured triangular grid will be used. An unstructured
triangular grid system gives more flexibility than a regular rectangular grid, e.g. local
refinement can be applied in shallower areas where the waves have shorter wavelength
and complex geometries of the domain, e.g. the boundary of a harbour or a complex
coastline, can be well represented by using an unstructured triangular grid.
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Figure 2.2: An dllustration for 2D of an unstructured triangular grid (right) where the grid
size depends on the bottom topography (left).

For the coastal applications in this thesis, we use a 2D mesh generator that is based on
the algorithm of DistMesh - A Simple Mesh Generator in MATLAB that was introduced
in [Persson and Strang m In this algorithm, the grid size can be made to depend on
a prescribed function. Since the wavelength of a water wave depends on the water depth,
i.e. in deep water a wave has longer wavelength than in shallower water, the grid size can
be made to depend on this physical property. The procedure to do so can be described
as follows. In water waves, the period of a wave is given by T' = \/c,, where A is the
wavelength and ¢, is the phase velocity. This period will not change during the wave
propagation. Suppose we only consider the period of the long waves Ty = \o/co, where
Mo and ¢y = /gh are the wavelength and phase speed of the long waves respectively. By
assuming one wave can be well represented by 20 points, we can estimate the grid size
for a given wave period Ty and water depth h (x) as

Ao (x)  Toy/gh(x)

grid size = 50 = 20
Figure gives an illustration of an unstructured triangular grid, for wave period T' =
120 s (used in tsunami-simulation), that depend on the water depth. In the left plot
of Figure [Z2] the bathymetry (bottom topography) is shown, while in the right plot the
corresponding grid is shown.

For coastal applications, two types of boundary condition, e.g. fully reflective and
absorbing (sponge layer) boundary conditions, need to be imposed in the numerical
implementation of the model. Also, an internal wave generation is needed for dealing
with signalling problems. The fully reflective boundary condition has been shown as
the natural boundary condition of the VBM (2. Now we will describe the absorbing
(sponge layer) boundary, and then in the next section we describe the derivation of an
internal wave generation method.

Absorbing boundaries should dissipate the energy of the incoming wave so that no
reflected waves will be generated at the boundary. To apply this type of boundary, we
force the surface elevation 1 and the surface potential ¢ to decay in a damping-zone
(sponge layer). The damping-zone is defined by a smoothened characteristic function
X (x), which has value one in the damping-zone and vanishes in the domain of interest.
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Figure 2.3: An illustration of the characteristic function x(x) (solid line with marker +) for

damping-zone and its effect when it is applied to a harmonic wave (solid line).

In the damping-zone, the exponential decay of the solutions n and ¢ is of the order of
e~%Ta where a is a damping coefficient and T} is the travel time of the wave in the
damping-zone. As an illustration, to obtain an exponential decay of the longest waves
up to 1073 (= e~7), the width of the damping-zone should be at least Lq = Tcp/a, where
co = v/gh. By implementing this boundary, the dynamic matrix system in 2I3), (ZI4)
becomes

Mdyij =D+ b (ij,¢) + B(B) - ¥ — aM(x - 1) (2.16)
M = —gMep — v (§) — aM (X - ) (2.17)

where x is the vector of the discretized function x(z). In Figure 23] a monochromatic
wave with period T' = 12 s and wavelength 177 m propagating above a flat bottom h = 30
m is damped in the damping-zone at x € [1600m, 2000m)].

2.2 Internal wave generation

To simulate waves from offshore to nearshore, the waves have to be generated offshore.
Although it is possible to generate waves at the boundary of a computation domain, waves
that are reflected within the domain should be able to pass through this boundary. An
alternative way is to use a combination of internal wave generation and an absorbing
boundary; this has been used in the applications described in this thesis, and will now
be detailed.

Internal wave generation, to be referred as embedded influxing, has been a specific
problem in water wave modelling. Especially for Boussinesg-type models, embedded in-
fluxing techniques have been developed since 1983 when [Larsen and Dancy applied the
technique for the classical Boussinesq model of M m In general, embedded
influxing is achieved by adding a source function to the continuity equation of the Bous-
sinesq model. The precise expression of the source function is obtained by comparing
the solution of the linear, forced Boussinesq equations, with the desired wave signals
to be influxed. As a consequence, the source function will depend on the model to be
investigated. Wei et all @] used a Gaussian shaped source function for the nonlinear




32 Numerical Implementation

shallow water equations, the classical Boussinesq equations of m and the
extended Boussinesq equations of Nwogtl [1993]. [Kim et all [2007] showed that for these
internal wave generation techniques the group velocity plays a central role.

In [Wei et all [1999] and [Kim et al! [2007], solutions of the linearized model (including
the source function) are obtained by using the Green function method. The method to
be described here is based on [Liam et all where the solutions of the linearized model
are obtained in a general way for dispersive wave models. The source function will be
derived for linear dispersive wave equations, but for the examples in this thesis, this
linear generation approach is also accurate enough for nonlinear wave propagation.

We use the following notational conventions. For 1D we use x as spatial coordinate
and k for the wavenumber. In 2D we use x = (z,y) as coordinates, k = (k;, k) as
wave vector, and write z = |x| and k = |k| for the length of these vectors respectively.
The dispersion relation of a dispersive wave model describes the relation between the
wavenumber k (in 1D) or the wave vector k (in 2D) and the angular frequency w. The
dispersion relations of the Airy linear theory and the VBM are given in (2] and (C22)
respectively. We will write the dispersion relation of a dispersive wave model in 1D as
well as in 2D as w? = D with D = Q2. The corresponding dispersive evolution can
be written in 1D and 2D as a second order time equation for the surface elevation 7 as
021 = —Dn and, equivalently, as the (Hamiltonian) system of two first order equations
for n and ¢ as

o =50 (2.18)
ho =-—gn

Here, D is the pseudo-differential operator that is related to D through spatial Fourier
transformation. After Fourier transform, the system (ZI8) reads

ro— D)2
i == (2.19)
hg = —gin

The general solution of the initial value problem of this Hamiltonian system is given by

~ Q - ~
< 7 > _ ( (;os‘(Qt) o sin (Q1) ) ( lo ) (2.20)
o) —&sin(Q)  cos () o

Since the model is linear, it is possible to apply the superposition principle for homoge-
neous solutions (Z20). To construct an embedded influxing, we extend these equations
by adding a source function of time and position in the dynamic equation. From the su-
perposition principle, a particular solution of the inhomogeneous equation can be added
to the general solution of the homogeneous equation. In other words, waves that are gen-
erated by embedded influxing will not affect the wave field of the homogeneous system.
The problem in the embedded influxing approach is to determine the source function
such that at specified points in the domain (the influx location), the specified excitation
is applied. More precisely, for an influx area denoted by B, let at each point b € B an
excitation signal s (¢,b) be given. Then a source has to be found such that the wave field

that is generated has the prescribed surface elevation: n,(b,t) = s(t,b).
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Since superposition of source functions is possible by linearity of the model, it is
sufficient to consider a single excitation point, e.g. x = 0. Then, for forcing in the
continuity equation, we will look for a source function Fj (x,t) such that the solution
¢ (x,t) of

D
atC: 51/)+F0 (th)
o = —g¢

satisfies ¢ (0,t) = sq (t), where sg is the desired elevation at x = 0. Here, { is the
fundamental solution for a single point excitation at position x = 0. By knowing Fjp, the
source for multiple excitation problem will then be given by a superposition

F(x,t)z/BFo (x — b, t)db (2.21)

with corresponding wave field ngenerated (x,t) = [ ¢ (x — b, t) db.
For the applications in this thesis, we consider source functions F' (x,t) of the form

F(x,t) =v(x) f(t) (2.22)
with v (x) a spatially dependent function and f (¢) a time dependent function. Point

source generation is obtained when «y (x) = dp; (X), is the Dirac delta function; other
cases will have a smooth function g(x) for a spatially extended source function with

7 (x) =g (x).
The system for the forced inhomogeneous equation can be written down in 1D and
2D as

D
5}( = EQ/J —+ F(X, t)
O = —g(
After spatial Fourier transformation, the system can be written as
o D - N
¢ = 5w+F(k7t)
i = —gC (2.23)

The solution is obtained from the variation of constants formula using the homoge-
neous solutions ([Z20). For ¢ there results in Fourier space :

f(k,t):/o cos (U (k) (t — 7)) F (k, t) dr (2.24)

Inverse spatial Fourier transformation leads to

C(x,1) = /0 /_ T cos (9 () (¢ — 1)) F (k. £) exp (ik - x) drdk
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Taking the condition ¢ (x = 0,¢) = so(t), we have the required relation between the
known prescribed excitation signal sg (¢) and a source function to be found

so (1) = /0 / cos ( (k) (t — 7)) F (k, 7) drdk (2.25)

The essential steps to construct from this the source function are the same in 1D and
2D. But since the details are a bit different, we will first consider 1D and then 2D.

2.2.1 Generation in 1D

In this subsection we consider the 1D case of internal wave generation for a spatially
extended source generation and a point source. By using (Z22) as the form of the
source function F (z,t), the relation ([Z225]) between excitation and source function can
be rewritten as

t 00
so (1) = / £ / cos (2 (k) (t — 7)) 4 (k) drdk (2.26)
0 —o0
where 4 (k) is the spatial Fourier transformation of 7 (x). In order to make it possible
to exchange spatial and temporal information in Fourier space, we will change from the
integration variable k to w. Since wavenumber k and angular frequency w are related
by the dispersion relation w = €Q(k), it follows that dw = V (w)dk, where V (w) =
Vg (K (w)), with V, (K (w)) = dS2/dk the group velocity. Here, K (w) is the inverse of

k=K (w), forw=Q(k)

Changing the variable k to w and assuming «y (z) is even function, the relation between
excitation and source function ([Z26) reads

t [e%e] K
so (t) = / (1) exp (iwT) / exp (—iwt) LI gy (2.27)
0 —00 Vv ((U)
By extending the integration of 7 over the whole real axis, we obtain

so(t) =2m /jo f(w) W exp (—iwt) dw

where we use the temporal Fourier transformations of f (¢) given by

fw)= % /o:o f(t) exp (iwt) dt. (2.28)
Hence, we arrive at the expression for the source function
Fla.) =7 @) £ (1), with () = 52050 (2.20)

This result holds for any choice of the function «y(x). For the applications in this
thesis, we use mainly a special case, namely: a point source generation. For point source
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generation, we take v (x) = dpi (), where dp;, (x) is the Dirac delta function. Then
4 (k) = 1/2m and the source function is given by

F, (2,t) = 6pir () .f (t), with f(w) =V (w)35(w) (2.30)

For extended function ~y(x), one special case is when the influx f (¢t) = s (t), i.e. f(¢)

is the original influx signal. Then from (2.29)) it follows that
F,(z,t) =v(z).s(t), with 5 (k)= ng—frk) (2.31)
An illustration for the the extended function ~y(z) for the area generation is shown
in Figure 24l In this illustration, v(z — z¢) with zp = 10 m from the OVBM with one
(indicated by solid line) and three (indicated by solid with circle) profiles are compared.
To conclude the description of the 1D influx method, it should be noted that the
influxing described here generates waves propagating symmetrically to the right and to
the left, see Figure This is because this forcing produces zero-velocity at the influx
point. Hence the waveheight of the right-travelling wave will be half of the value as
prescribed by the signal function so(t). Stated differently, to influx a harmonic wave of
amplitude 1 to the right, we should take for so(¢) the harmonic signal with amplitude 2.

12

10r

y(x-10)
(2l

8 85 9 95 10 105 11 115 12
x [m]

Figure 2.4: An illustration for the extended function v(x —x0) for the area generation function
that is obtained for the dispersion relation of 1D OVBM with one profile (solid line) with k = 3.16
and three profiles (solid with circle) with k1 = 2.58, k2 = 11.24 and k3 = 21.45 above h =1 m.

2.2.2 Generation in 2D

For the 2D case, we consider influx from a line source function. To simplify the problem,
we consider the case of excitation at the y-axis of a monochromatic wave with frequency
wp under a fixed angle 6y. The method to be described here can be generalized for broad
spectrum waves by superposition.

Let k¢ denote the wavenumber related to wg and kg = ko sin (0g), kY = ko cos (6p),
with 6y the angle with the x-axis. Then the excitation at x = 0 is

$ (Y, t) la=o = aexp (i (yk) — wot)) (2.32)
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We will now determine a source function F (x,t) of the form
F (x,t) = Dexp (i (ykg —wot)) .g (x) (2.33)

where g (x) can be spatially extended in the z direction; a line source at the y-axis is
obtained by taking g (x) = dpir (x): so that

F (x,t) = Dexp (i (yk‘ — wot)) bpir (2) (2.34)

Now the problem is to determine an expression for D.
The spatial Fourier transformation of the source function ([Z33)) is given by

. 1
F (k,t) = (%) D exp (—iwpt) // x) exp zyk) exp (—ik - x) dx

= <%) D exp (—iwpt) .27.g (kz) /exp (—iy (ky - kg)) dy (2.35)
= Dexp (—int) Q( ) 5Dzr ( kg)

In the second and third line we use § (k) = f g (ky) exp (—iky.xz) dz and 0 p;y, (k;y — k(y)) =
o f exp( 1y (k'y - kg)) dy, respectlvely The relatlon between excitation and source
function can be written as

a exp ( (yko - wot / D exp (—iwoT / / cos (Q(t—1))

G (k) Opir (ky ko) exp (iyky) dkydk,dr
Extending the time integration interval to the whole real axis, there results
aexp (—iwpt) = / D exp (—iwot) / cos (Qo (k) (t — 7)) .9 (k) dkdT
0

:/ Dexp (- zwot)/oo %exp(—iﬂo (ks (t — 7)) .4 (ko) dadr

— 00

/ / Dexp (=i (Qo — wo) 7) exp (—it) . (ks) dkndr

527TD/ (spir (Qo - wo) exp (—iQot) g (kx) dkx (236)

where Qg (k;) = Q < k2 + (kg)2> In the second line of ([236), the factor 1/2 appears

in the process to write the integral over the whole real axis. In the fourth line of (236,
the property of the delta Dirac function is used. With

’ k2 + (k)
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we can rewrite (236) by change of integration variable k, to w

aexp (—iwpt) = WD/ Opir (w — wo) exp (—iwt) .g (kz) ggz e
‘ g (k3)
mD exp (—iwol) TS s o)

From this follows that the source function is given by ([233]) with D given by

aexp (—iwot) .V (wo) cos (Op)
g (kg) '

The y-axis is a line source if we choose g () = dp;, (). Then the force function for line
generation is given by

D =

Fro(z,t) = 2aexp (—iwot) .V (wo) cos (6o) .0pir () (2.37)

The force function (Z37) is the same as given bym M] which was derived by
using the Green function method.

The force function ([2:37)) can be generalized for a (broad band) spectrum, e.g. waves
with frequency wp € [0, Wmaz], as

Foo (2,1) = 2 /0 T w0 exp (—iwot) V. (wo) <08 (6o) S () duo (2.38)

where a(wp) is the amplitude of waves with frequency wo.

In the next subsection we apply the method of embedded influxing for 1D with the
area generation (231), and 2D with the line influxing ([237)) for a Finite Element imple-
mentation of OVBM.

2.2.3 Finite Element implementation for Embedded Influxing

For 1D OVBM with a point source excitation at © = xg, the dynamic equations of the
OVBM in (L20) are given by

{&m = =0y [(h + 1) ug] — 0x [B- U] + 2y(x — o) f (t) (2.39)

Bp = —gn— (9:0)° /2

For point source generation, (z — o) = dpr(x — o), the function f is given by f (w) =
V (w) .5 (w), while for 1D area generation with f(t) = s(t), v(z) is given by J(k) =
Vy(k)/2m.
We will illustrate the Finite Element implementation for 1D area generation for
OVBM (239). The resulting matrix system is then given by
Moyi; =D¢+b(1,6) + B(B) L +2M7.5(1) (2.40)
Mo = —gMn—7(9)



38 Numerical Implementation

influx

n/a
o
1

-800 -600 -400 -200 0 200 400 600 800

influx

200, 1)/ a

n (x=

170 175 180 185 190 195 200 205 210
t[s]

Figure 2.5: An illustration of area generation for 1D OVBM. In the upper plot, a snapshot is
shown of monochromatic waves with period of 7 s that are generated at x = 0 m above constant
bottom h = 30 m. In the lower plot, the comparison of the signal of the simulation (solid) and of
the analytical solution (dots) at x = 200 m is shown. Notice that the surface elevation 1 above
is normalized with the amplitude of input signal ainfiuz-

where 7 is the vector of the discretized function ~ (z).

In the upper plot of Figure 23] a snapshot of the influxing of monochromatic waves
with period of 7 s that are generated using the area generation ([Z39) at £ = 0 m above
a constant bottom h = 30 m, is shown. The waves are damped in the damping zones
at x € [—800,—600] and = € [600,800]. In the lower plot of Figure 25 the measured
signal from the simulation is compared with the solution at = = 200 m. From this plot,
it can be seen that the amplitude and period of the simulation agree very well with the
solution.

Implementation of the embedded influxing method in 2D OVBM is similar with the
1D version. For a given initial signal at y = yg, the 2D line source generation for the
OVBM is given by

{(‘%n =-VIh+n) Vel =VI[3- VU] + FL (2.41)

op =—gn—1|Ve|* /2
where F, = [, Fro(z —b,t)db, with b € B, where B is the (part of) the y-axis line

influxing and Fpg is defined in (Z37). The Finite Element implementation in 2D is then
given by
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Figure 2.6: The numerical setting for simulations of 2D OVBM is indicated in the upper left
plot, for line influzing at y = 800 m. Snapshots of the simulations at t = 30 s (upper right), 60
s (lower left), 80 s (lower right).

{Mam =D¢+0b(71,¢) + B(B) L+ M'Fy, (2.42)

M8 =—gMn—1(9)

with M is the mass-matrix in 1D with elements M}; = [ T; (x) Tj (x) du.

We illustrate the line influxing 2D OVBM for wave propagation through a slit in
Figure 2.6l This example shows that reflections from the wall do not influence the
generation mechanism. Monochromatic waves with period of T = 10 s are influxed
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uniformly with a line generation at y = 800 m above a constant bottom h = 20 m. In
the upper left plot of Figure 2.6l the numerical setting for the simulation is indicated:
damping-zones are placed at the north-side of the line to damp also the reflected waves
from fully reflective wall at ¥ = 530 m, and inside the rectangle domain below the wall
at all sides. Since the wavelength of the generated waves is 121 m, for the simulations a
grid size of approximately 10 m is used. This grid size is finer than indicated in upper
left plot of Figure [Z6l In the upper right plot and lower plots of Figure 2.6, snapshots of
simulations at ¢t = 30, 60 and 80 s are shown. From these plots, the diffraction pattern
is clearly seen after the waves propagate through the slit.

The performance of the 2D-code in representing effects of diffraction, refraction and
shoaling will be shown in Chapter 4. In that chapter, the 2D-code is tested against the
experiment of Berkhoff et all [1982]. Tlustrations for influxing more complicated waves
in 2D under an angle will be shown in Chapter

Appendix 2.A

A basis function for a 2D Finite Element triangular grid is illustrated in the right plot
of Figure 271 Now we will describe an explicit expression for the basis function T; (x).
Note that T; (x) has a strict local character, i.e. it has value one at node-i and zero at
other points. In order to construct a linear polynomial which is defined on each triangle
we need three parameters. A natural choice is to use the function values in the three
vertices (nodes) of the triangles, e.g. (x1,41), (2,y2) and (z3,y3) . The linear polynomial
is defined by

a; +bx + ¢y

T, (x) = 2.4
(x) = B0 (2.43)
where
1 1 1 Y1 1
A=g| 1 a2 g | =52 —21) (ys —y2) = (42 — 1) (w3 — 22)]
1 z3 ys3

is the area of the triangle. To obtain an explicit expression for T; (x), the three unknowns:
a;, b; and ¢; in (Z43) has to be determined from three points: (x1,y1), (22,y2) and
(z3,y3). By assuming T; (x = (z1,y1)) = 1 and zero at the other vertices, we have

L =a; +biz1 + ciyn
0 =a; + b2 + ciy2
0=a; +bizs + c;iys
Then the values of the the coefficients a;, b; and ¢; are given by
a; = T2Y3 — T3Y2
bi=y2 —ys

Ci = X3 — T2

This provides the explicit expression for T; (x).



Chapter

Optimized Variational 1D
Boussinesq modelling of
coastal waves propagating over
a slop

Abstract

The Variational Boussinesq Model (VBM) for waves is based on the essential property
that wave phenomena can be exactly described as a Hamiltonian system. In the VBM,
the fluid potential in the expression of the kinetic energy is approximated by its value
at the free surface plus a linear combination of vertical potential profiles with horizontal
spatially dependent functions as coefficients. The vertical potential profiles are chosen
a priori and determine completely the dispersive properties of the model. For signalling
problems above varying bottom we show how to optimize the wave number of one or more
Airy functions as vertical profiles, by minimizing the kinetic energy functional for the
given influx signal. The performance of a finite element implementation with piecewise
linear basis functions is investigated by comparing simulations with experimental data
from MARIN hyrodynamic laboratory for bichromatic and irregular waves running over
a sloping bottom. The conclusion is that this code is robust and remarkably accurate
and efficient.

1Published as:
D. Adytia and E. van Groesen. Optimized Variational 1D Boussinesq modelling of coastal waves prop-
agating over a slope. Coast. Eng., 64:139-150, 2012.
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3.1 Introduction

Modern day activities in the near shore area require reliable simulations of the waves
coming from the deep ocean or sea to the shallower parts near the coast. Among these
activities are gas and oil exploitation, fields of wind mills, with offshore constructions
that have to be designed and constructed to be able to withstand wave forces that can
be calculated once the waves have been modelled. For sustainable development of the
coastal area, the effects have to be calculated of waves on sedimentation and coastal
erosion and for the design of harbours. But simulations of waves in coastal area are not
easy, since three major physical effects are involved and interact with each other in a
complicated way: effects of nonlinearity, of dispersion and of the bathymetry. In this
paper we will formulate and test a Finite Element implementation of a variational wave
model that will be shown to be capable to perform such simulations.

Many surface water waves models used in coastal engineering applications are Bous-
sinesq type models. Since the idea was introduced by Boussinesd HM], the main chal-
lenges still remain the same until now: the accuracy in dispersiveness and nonlinear-
ity. The most common way to derive such Boussinesq-type models is by introducing
small parameter expansion techniques in the full set of water wave equations (see
11997] and [Madsen and Fuhrman [2010] for reviews). The higher-order expansion leads
to higher-order derivatives (at least third-order) in a resulting Boussinesq-type model.
As a consequence, the numerical implementation becomes more complex. A rather dif-
ferent approach in deriving Boussinesg-type models is via the variational formulation for
surface water waves. One of them is the Variational Boussinesq Model (VBM) that was
introduced by [Klopman et all [2005, 2007, [2010)].

The VBM is based on the essential property that wave phenomena can be exactly
described as a Hamiltonian system in variables at the free surface. As introduced in
Klopman et all HQJ)DH, 2007, M, Boussinesqg-type equations can be obtained by taking
an approximation for the fluid potential using its value at the free surface plus a linear
combination of vertical potential profiles with horizontal spatially dependent functions
as coefficients. The vertical potential profiles are chosen a priori while the horizontal
functions have to satisfy a system of linear elliptic equations which have to be solved
together with the dynamic equations. Boussinesq equations for which additional elliptic
equations have to solved are not new, as can be found in (Whithaml [1997], Broer [1973).

Despite the fact that an additional elliptic equation has to be solved, the resulting
model is quite simple because the highest derivatives are of second-order and no mixed
temporal-spatial derivatives appear. As a consequence, the numerical implementation
is much easier than the implementation of higher-order Boussinesg-type models, e.g.
(Wei et all [1995], [Agnon et all [1999], Madssnﬂ_aﬂpﬂﬂﬂ]andlm_anﬁlﬂw].
Moreover, since the VBM is derived in a consistent way from the variational structure
the VBM energy is conserved and given by a positive Hamiltonian (see
[2010]). Non-positivity of the Hamiltonian may lead to instabilities (see m,
Broer et all [1976], Milder [1990] and [Yoon and Liu [1994]).

For the applications treated in [Klopman et all [2010], such as periodic waves and
confined wave groups propagating over a flat or sloping bottom, it turns out that one
vertical profile is sufficient to capture the essential phenomena. In Lakhturov, Adytia,
and van Groesen ﬂm}, for wave fields with a broad spectrum, such as a focusing wave
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group propagating over a flat bottom, it was shown that one vertical potential profile is
not good enough to describe the propagation accurately. Therefore, for such applications
the VBM with multiple vertical potential profiles was used and an optimization criterion
was formulated to select profiles that lead to the best possible dispersive properties.

In this paper, we show the general form of the VBM with multiple vertical profiles
and a criterion to optimize such profiles for propagation above a sloping bottom. This
variant will be called Optimized VBM for sloping bottom. Consistent with the derivation
of the model via the variational formulation, this model will be implemented in a Finite
Element method.

To show the performance of the model we simulated two test cases: bichromatic
and irregular waves which propagate over a 1/20 slope from a water depth of 30m to
15m. Accurate data are available of experiments performed at MARIN hydrodynamics
laboratory in Wageningen, The Netherlands. For the bichromatic case with narrow
spectrum accurate numerical simulations with only one vertical potential profile will be
presented. For the irregular wave with broad spectrum, we will show that results of
VBM with one profile are rather poor, but much better for simulations with two optimal
profiles.

In section 2, we describe the derivation of the VBM with multiple vertical potential
profiles and an optimization criterion to get the optimal Airy profiles for a sloping bottom.
In section 3, the finite element implementation for the model will be described. The
simulations results of the model for both test cases are described in section 4. Section 5
provides some conclusions and comments.

3.2 Variational Boussinesq Model

3.2.1 Vertical structure in the variational principle

The VBM is based on the variational principle for water waves in , and leads
to equations in Hamiltonian form as discovered earlier Zakharov [1968|, Broex ﬂ19_7_4l],
l%], see also m In the VBM introduced in [Klopman et all [2003,
m, the vertical structure of the flow in the kinetic energy of the Hamiltonian
is approximated by a (series of) vertical shape function(s) that have to be chosen in
advance. The Hamiltonian is the total energy, which is the sum of the kinetic energy

71
K (¢,1) :// 3 |V3®|* dzdx (3.1)
xJ—h
and the potential energy
1
P= 3 /gnde (3.2)

where 7(x,t) is the surface elevation, ® (x, z,t) is the fluid potential in the interior of
the fluid layer and h (x) is the water depth. The horizontal and vertical coordinates are
x = (z1,72)7 and z, respectively. We use as canonical variables to describe the dynamics
of the flow the surface elevation 7 (x,t) and the fluid potential at the free surface ¢ (x,t).
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Luke’s variational principle m uses the Lagrangian £ (7, @)

n
L(n, @) = —//{/hﬁtfb—k%|V3<I>|2+%gzdz}dxdt.

By using Leibniz integral rule, and neglecting dynamically uninteresting terms, there
results a Lagrangian that depends on the surface variables

cino) = [ [ [ [ o dX—H(sﬁ,n)] dt (3.3)

with H = K(¢,n) + P(n), see m By taking variations with respect to ¢ and
7, the Hamiltonian equations are found

81577 = 5¢H (¢7 77) 78t¢ = _577H (¢a 77) ) (34)

where d4H and 0,H denote the variational derivatives of H with respect to ¢ and n
respectively. These equations describe the dynamics of the water waves. The exact
formulation will be obtained if we could assure that the fluid potential ® satisfies the
Laplace equation in the fluid interior, the impermeability condition at the bottom z =
—h(x) and the condition ® = ¢ at the free surface z = n. Unfortunately it is not
easy to express K explicitly in the surface variables 7 and ¢. Nevertheless, the steps
above make it possible to take an approximation for the Hamiltonian. By inserting the
approximation into the Lagrangian ([B.3]), we obtain a consistent approximation while
keeping the consequences of the exact formulation, such as energy conservation.

In the VBM as described in [Klopman et. al) ﬂ20_ld], the vertical structure of the fluid
potential ® in the kinetic energy (B is approximated by its value at the surface and
multiple expansion terms as :

D (x,2,t) = ¢ (X,t) + L Fon (2) Y (X, 1) = & (x,t) + F(2) - ¥(x) (3.5)

where F' and ¥ are vector functions. Note that the condition ¢(x,t) = ®(x,z = n,t) has
to be assured to keep the canonical structure of the Hamiltonian. As a consequence, it
is required that F,,(z = n) = 0. Also, to satisfy the bottom impermeability condition,
we assume the bottom is slowly varying, so that the requirement F,In(z = —h) =0is
sufficiently accurate. The vertical profile functions F,(z) have to be chosen in advance
and 9,,(x) are functions that have to satisfy the optimality condition of vanishing of
the variation of the kinetic energy with respect to v,,. This variation leads to a system
of linear elliptic equations that has to be solved together with the dynamics for the
variables 77 and ¢, as we shall see below. Notice that the expansion (B3] is different from
the Green-Naghdi theory, as described in (Green and Naghdi [1976], where a polynomial
expansion is used to describe the vertical flow. In that method, the flow is allowed to be
rotational while for VBM we restrict to irrotational motions.

Since this paper will only consider test cases for 1D, we restrict the equations to 1D
from now on. By substituting the approximation (3] into the kinetic energy ([B.1]), we
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obtain

1 K 2 / 2
Ko =5 [ [ 000+ 00(F - 0P 4+ (7 w2

n

%// 0o+ F - 0, 0] + (F' - 0)’dzda
“h

1

5/Kh+m@mﬁ+2mm%@m+@&-Mm@+mqﬂdm (3.6)

In the second line, to simplify the problem, we assume that the vertical profile F, is
slowly varying with respect to  and h so that the contribution of the term ¥ - 0, F is
small and can be neglected; in [Klopman et all [2005], the resulting equations are called
weakly-nonlinear. In the last expression, we introduced the matrices o and v, and the
vector 8 which have elements that depend on the vertical profiles F,

n n n
Q5 = / FiFde; Yi; = / F;Fj'dz, ,61 Z/ deZ (37)
—h h —h

The explicit expressions for these coefficients are given in the Appendix. With the kinetic
energy expression (B.6), variations of the Lagrangian with respect to ¢, 7, and 1, give
rise to the following system of PDE

O = _ax((h + ﬂ)3z¢) - az(ﬂ : 81,\:[/)

R = —gn — $0:¢° (3.8)
—0, (0, V) + 4V = 0,(B0,¢)

As it turns out, the quality of the model is highly determined by the choice of the
vertical profile functions. In [Klopman et all ﬂ@ﬂ], the VBM was characterized by two
choices of the vertical profiles. The first one is parabolic profile which is sufficiently good
for relatively long wave. A second choice is a profile as in Airy linear potential theory, a
cosine hyperbolic function:

T =

which has exact phase and group velocities for infinitesimal waves with wavenumber &, .
Therefore, for periodic waves, Airy profile is the best choice by choosing k the same as
the wavenumber of the periodic wave. But for a broad spectrum such as focusing wave
group or irregular waves, the form (39) can at best be approximative. In the rest of this
paper, we will only use this type of profiles and refer to them as Airy profiles.

The exact dispersion of linear surface waves is given by

Q (k) = sign (k) / gk tanh (kh) (3.10)

where Q(k) = w denotes the angular frequency [Rad/s| and k the wavenumber. The
dispersion relation of the linearized VBM (B8] above flat bottom can be calculated and
is given by

Quom (k) = kco\/[l B %26 - (ak? +7)71 B (3.11)
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Figure 3.1: The dispersion relation of the VBM with one vertical profile (denoted by solid line
with cross), two vertical profiles (denoted by solid line with diamonds) and the exact dispersion
(solid line) are compared in the left plot at a depth h = 30m. The right plot shows the difference
between the dispersion relation of the VBM with one vertical profile and the exact dispersion
(dashed line, left hand azis) and the VBM with two vertical profiles and the exact dispersion
(solid line, right hand axis). These plots are, by way of example, for the optimal choices of
vertical profiles for the test case of irreqular waves to be shown in section[34] and are obtained
from the optimization criterion to be described in subsection 2.2.

where ¢y = +/gh is the speed of long waves. Here, it is assumed that all values x,, are
different so that the matrix ak? + « is invertible.

Besides the choice of k,, in the Airy profiles [3]), the number of vertical potential
profiles in the approximation of the VBM (3] plays a significant role in the dispersive
quality of the model. This is illustrated in Figure B showing the VBM dispersion
relation with one and two vertical profiles compared to the exact dispersion relation. In
this illustration, the values of &, for the Airy profiles are k = 0.074 (or w = 0.84) for the
one vertical profile VBM, and 1 = 0.064 and k2 = 0.26 (or w; = 0.77 and wy = 1.59)
for the two vertical profiles VBM, at a depth h = 30m. When dealing with a wave with
broad spectrum with frequency w € [0, 1.5], using two vertical profiles already gives a 10
times more accurate dispersion relation compared to the VBM with one vertical profile,
as is shown in the right plot of Figure Bl

The approximation of the fluid potential ® in ([BH) with Airy profiles (39) is not
new. Similar expansions have been used in Nadaoka et all [1997], Athanassoulis and
Belibassakis [1999] and [Belibassakis and Athanassoulis [2011] to obtain Boussinesq-type
models. But the way how to derive the model and to choose the wavenumber(s) for the
Airy profiles (33)) is different.

3.2.2 Optimization of the vertical profiles

Since we consider signalling problems in this paper, we can exploit the information from
the initial signal to find optimal values for x in the Airy profile(s). Here, we simplify
the problem to be linear and the bottom to be constant; hereafter we will show the
application of the method for a varying bottom. Following [Lakhturov et all M, we
observe that the kinetic energy functional at a certain depth h = hg can be written for
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any linear dispersion wave equation as
K (¢) = i/|9¢|2dx— i/‘széfdk (3.12)
2  4mg '

where qB is the spatial Fourier transform of ¢. Now, let an input signal 19 = 7 (xo,t) at
the influx point z¢ be given, and let 7p (k) denote its spatial Fourier transform. The uni-
directional evolution of the waves is given by 0;¢ = —iQ2¢. Combined with the dynamic
equation d;¢ = —gn, we /thain a relation between the initial surface elevation and the
initial surface potential ¢g

€2 (k) ¢o (k) = gio (k)
It follows that we can express the kinetic energy ([B12) as

K= %/mz)(k-) 2dk (3.13)

For uni-directional propagation, it holds that
0 (@, t) = / o () eitka =0 gy — / o () 1@ @)=t g, (3.14)

where 7 (w) is the temporal Fourier transform of 7 and 2~ !(w) denotes the inverse of
function Q(k). Since dw = V (k) dk, where V (k) = dQ (k) /dk is the group velocity, we
get 7o = V(k)no(w), and the kinetic energy (BI3]) can be rewritten as

K= %/W) (W) 2V (w) dw = g/S(w)V(w)dw (3.15)

where _ ~
S (w) = 1) 7 () (3.16)
2w
is the power spectrum.

As a direct consequence of the minimization property of the kinetic energy:

_ : 1 2
K(¢) = (b:;naltnzzo 5 //|V<I>| dzdx

the kinetic energy functional for exact dispersion will always be less than any approx-
imation. For the VBM approximation with parameters x,, in the vertical profiles, the
kinetic energy for the VBM is given by

Kopm (Hm,) = g /S (W) 1% (w, Iim) dw
where V(w; k) is the group velocity corresponding to (3I1). To obtain a model with

the best possible dispersion, we minimize Kyp, (km) with respect to all possible k,,, or
equivalently :

win (oo~ Kool = in {4 [ @)V (1) = Vi ()] i}

Km Km
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For varying bottom, the minimization above should be applied for every depth since the
group velocity depends on the depth

min [Kypm (h) — Kep(h)] = min {g /S (W) [V (W, Bm, h) — Vg (w, h)] dw} (3.17)

Although the spectrum S(w) actually changes with depth, we will neglect that in
the following. This optimized variant of the VBM will be called the Optimized VBM
(OVBM).

3.3 Numerical implementation

Consistent with the derivation of the model via the variational formulation, OVBM will
be implemented in a finite element method. In this implementation, we discretize the
solutions in space, leading to a matrix system of ordinary differential equations (ODEs)
which are solved in time using a Runge-Kutta method as ODE-solver in MATLAB. The
system of linear elliptic equations for ¥ (B.8]) has to be solved at each time level.

We start with the discretization of the variables on a grid of n points {zx} using
piecewise linear local basis functions; this is possible, since the highest spatial derivatives
in (BH) are of first order. The expression of these tent functions is given by T} (z) =
max {|x — x| /Az,0} where Ax is the grid size. To discretize the variables in space, the
coefficients will depend on time, ie. n(z,t) =~ X n; (¢)T; (z) = 77 (¢) - T (z), where 7
and T are vector functions. Similar notation is used for ¢ and V.

Now, we substitute these approximations directly into the action principle [B3]) with
the Hamiltonian for VBM:

Lum = [ [ [ @)~ Hom 0,9 (3.15)

where Hypm (1,0, V) = P + Kb is given by (B2) and [B0). The first term in (B3I
becomes

/(¢8m)dx ~ > oM ;= Mé- 0 (3.19)
2%

where M is the so-called mass matriz with elements M;; = [T;(x)T;(z)dz, and 7;
denotes the derivative of n; with respect to ¢. The second term in ([BI8) becomes

_ _ 1 1. - - _ _
1 1
—AV - ¥+ -GV -¥
+2 v _+2 V.- W

where D and A are so-called stiffness-matrices with elements depend on h and « re-

spectively: D;; = [ h(z)T] (x)TJ/ (z), Aij = [a(2)T] (x)TJ/ (x)dz . G is the mass matrix

that depends on v: G;; = [ v(2)T;(x)T;(x)dz. B is the column vector :

B = [B(b1)¢, B(B1), - . B(Bn)9] , with B(3;) = /Bi(x)T{(x)Tj ()dz
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and H3(7, ¢) is the nonlinear cubic term:

_ 1 , ,
Ha(1,9) = 5 3 10,60 Cise with Coge = [ (a1, )T ()

4,5,k

Now the Lagrangian (3.I8)) becomes a Lagrangian with vector state variables (77, ¢, ¥):

/ [M¢ -0y — H(ij,, )] dt (3.20)
From this we find the Hamiltonian equations as the matrix system
M0y = 05 Hupm = D+ b(71. 6) + B(B) - &
Mdyp = —0pHypm = —gM¢ — v(9) (3.21)
and an additional matrix system of linear elliptic equations from Oy Hypm = 0:
[A+G]Z=-B (3.22)

Above, b(7, ¢) and 9(¢) are column vectors with elements

bj(q_ﬁ, ) a¢JH3 77a Zﬂz¢kczgk

i,k

(¢) am H3 Z¢ ¢kcjlk

ik

The algorithm to obtain numerical solutions for the system ([3.2I)) and (322) by time
stepping can be described as follows. For given initial conditions 7y and ¢q, we calculate
U, by solving the elliptic system in ([B22)). Then by using the new ¥y, we solve the
dynamic system in (32])) using a time integrator, a Runge-Kutta method (or ODEsolver
in MATLAB) to obtain new 7; and ¢;. These steps can be repeated until the desired
end-time.

Note that the matrix system ([3.22) can become very large if many vertical profiles
and many grid points are used. But since we use a finite element implementation with
simple local basis functions, the resulting system is very sparse and can be solved fast.
As illustration, for a rather small system, i.e. small number of elements, a direct method
such as the LU-decomposition can be used. The time to solve the elliptic system takes
10% to 20% of the total computing time. For larger systems, or for 2D variants of the
code, an iterative method such as preconditioned conjugate gradient has been applied to
solve the elliptic system. This step then cost 20% to 40% of the total computing time.
In all cases, a good initial guess of W is available from the previous time steps.

For dealing with an influx (signalling) problem, the algorithm above can still be
applied. For simulations of OVBM which are performed in the next section, we use the
internal wave generation that similar with a method of [Wei et all [1999] and [Kim et al!

. Here, the influx signal at position g is added as a source function in the dynamic
equations, but weighted with ‘u/(a: — Zp), where

Vi(z) = /V(k)e*“"dk
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Figure 3.2: At the left, the characteristic function x is shown. At the right, the embedded force
function V(x — z0) of the OVBM with two vertical profiles is shown.
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Figure 3.3: The situation of the experiment scalled-up (1:50) to coastal dimensions (units in
meter). The waves are generated by a wave flap in the laboratory and measured at several posi-
tions; Wi, Wa, Wiz, Wis, and Wi7. Note that the horizontal distances between these positions
are not in scale.

is the inverse Fourier transform of the group velocity V' (k) of the model. The resulting
dynamic equations (B.8)) including this source function become

0 = —0u((h +1)0s0) — (B - 0, 0) + 2V (z — 20)s(t)
Oip = —gn— 30.0°

where s(t) is the influx signal.

Instead of using transparent/radiation boundary conditions to limit the domain of
computation, we use a damping-zone to damp the waves outside the computational win-
dow. We defined a smoothened characteristic function y near both ends of the interval,
and vanishing in the area of the domain of interest, leading to

om = —0((h+1)02p) — 0x(B - 0,0) + 2V (x — 20)s(t) — axn
Qe =—gn— 50.¢* —axo
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An illustration of this characteristic function x(x) and the function V() are shown in
Figure for the applications in this paper. The choice of the damping coefficient a
and the length of the damping zone are coupled. The exponential decay e~ %! is sufficient
for a = 1 when the length of damping zone such that the traveling time of the (longest)
wave is long enough to obtain an attenuation factor of 1075,

3.4 Numerical simulations

3.4.1 Laboratory experiments

In this paper we consider two cases for which experimental data from the hydrodynamic
laboratory MARIN (the Maritime Research Institute Netherlands) are available to test
the performance of the OVBM. The first case is a bichromatic wave, MARIN test number
305002, and the other case is an irregular wave, MARIN test number 103001. The
experiments were performed in a wave tank of 180m length and 0.6m water depth. At a
certain location of the tank there is a 1/20 slope from 0.6m to 0.3m water depth. This
geometry in laboratory dimension was designed to represent a realistic situation in the
coastal area which has a scale of 1 : 50. The coastal dimensions related to laboratory
scale are shown in Figure A wave absorber in the laboratory as artificial beach is
placed at the end (at the right) of the wave tank. For the simulations we use the scaled
situation as in Figure for both cases.

For numerical simulations, we use the signal that was measured at W; = 1957.5m as
influx signal. At this position, the signal contains bound waves that are generated during
the propagation from the wave flap to Wj. Therefore, we filtered the signal by neglecting
contributions of long and short waves in the spectrum at Wj. For both cases, we compare
the signals of the simulations of the OVBM with the measurements at positions indicated
in Figure B3F Wy = 3940m, Wio = 7170.5m (at the foot of the slope), Wis = 7470.5m
(at the top of the slope), and Wi7 = 7887m (at the shallow area).

3.4.2 Simulation of bichromatic waves

The experiment of the bichromatic waves was executed for a time interval that corre-
sponds after scaling to 6000s. In this paper, we show results of a simulation for one
hour since the rest of the simulation showed the same behaviour. The measured signal
at W1 and its amplitude spectrum as a function of frequency [Hz] are shown in Figure
B4l The peak frequency of this case is 0.076Hz (wpeqr = 0.4814); this corresponds to
waves of wavelength 197.3m in the deep area (h = 30m) and 148.9m in the shallow area
(h = 15m). From the spectrum of the influx signal shown in Figure B4] we see that
second order waves have frequency 0.165H z. Taking 8 points to represent the shortest
waves, we choose dx = 4m for the simulation. This is accurate enough to represent all
the waves (including second order waves) for which the dispersion error is less than 1073
(see Figure BAl). The maximal wave steepness reached during the experiment of this case
is 0.001 in the shallow area (h = 15m).

The bichromatic case has a narrow spectrum as shown in Figure[3.4l Here and in the
following, in ’spectrum plots’ we show vertically the square root of the power spectrum
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Figure 3.4: At the left is shown the measured signal at Wi of the bichromatic waves for a short
time interval (of the total 1 hour), and at the right the amplitude spectrum (square root of the
spectrum defined in (Z10), i.e. the absolute value of the complex spectrum of the signal) as a
function of frequency [Hz].
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Figure 3.5: The amplitude spectrum (solid line, left hand axis) is plotted together with velocity
errors: the group velocity error (solid line with plus sign, right hand axis) and the phase velocity
error (solid line with diamond, right hand azis) as function of frequency [Hz] for the one vertical
profile OVBM with calculated optimal value v = 0.612 (corresponding to 0.0974Hz) above the
depth at W1 (h = 30m).

defined in (BIM), i.e. the absolute value of the complex spectrum of the signal; this
representation shows more clearly than a plot of the power spectrum the long and short
wave contributions. it turns out that for this reason sufficiently good simulation results
are found by using only one vertical profile. This can also be seen from the plot in Figure
of the group velocity error Vip,, — Ve, and the phase velocity error Cypm — Cey -

Here, we use a notation v = Qupm (k) for the optimal frequency that corresponds to
the optimal wavenumber « for the Airy profile (9)). The optimal value v is obtained
by minimizing the kinetic energy error (BI7). The plot of the kinetic energy error as a
function of v is shown in the left plot of Figure at the deep part of the water; the
position of the lowest value produces the optimal value v. The optimal values above the
other depths are shown at the right.
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Figure 3.6: At the left a plot of the kinetic energy error (Kypm — Kez) as function of v for
h = 30m, and at the right the optimal values v for each depth above the slope.

Part of the signals of the simulation at positions Ws, Wis, W15, and Wi; are com-
pared with the measurements in Figure 3.7l The phasing and form of the simulated and
measured waves agree quite well. Amplitude spectrum of the simulation and measure-
ment are compared at positions Wiy and Wi7 in Figure B8 comparing the long and
short wave components in the spectrum, the simulation of nonlinear effects seems to be
quite accurate. In subsection 4.4 we provide additional quantitative information about
the quality of the simulated waves.

3.4.3 Simulation of Irregular waves

The experiment and the simulation of the irregular waves were executed for a time interval
that corresponds after scaling to 12500s (approximately 3.5 hours). The measured signal
at W1 and its amplitude spectrum as function of frequency [Hz] is shown in Figure
The irregular waves are generated by using JONSWAP-type of spectrum with random
phases. Here, the generated spectra has significant waveheight 3.12m in the coastal
dimension. The peak frequency of this case is 0.0831H z (wpeqr = 0.522); this corresponds
to waves of wavelength 177.6m in the deep area (h = 30m) and 135.7m in the shallow
area (h = 15m). From the amplitude spectrum, we observed that the shortest waves
have frequency 0.318H z, corresponding to waves with wavelength 15.4m. Based on this
reasoning, and taking 8 points to represent the shortest waves, we choose dx = 2m for the
simulation. The maximal wave steepness reached during the experiment and simulation
of this case is 0.037. The steepest waves appear near = 5000m (in coastal dimension)
as shown in Figure 314

Different from the previous test case, the irregular waves has a broad spectrum as
shown in Figure B0 it turns out that for this reason the simulation with one vertical
profile will not be sufficient. This can already be anticipated from the plots in Figure
of the velocity errors of the one vertical profile OVBM (in the left plot) and the
two vertical profiles OVBM (in the right plot). Using one vertical profile, the velocity
errors are quite large for the main frequencies of the waves, while with two vertical
profiles the errors are 10 times less. Therefore, we used two vertical profiles OVBM to
get good results for the simulation of these irregular waves, but we will also present some
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Figure 3.7: The simulated (solid line) and measured (dashed line) signals of the bichromatic
waves are compared at positions Wa (first row), Wiz (second row), Wis (third row), and Why
(fourth row). In the shallow area, Wis and Wiz, nonlinear effects can be observed in the simu-
lations and measurements.

quantitative information about the results of simulations with one vertical profile.

The optimal frequencies v,,, leading to corresponding optimal wavenumbers k., for
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Figure 3.8: Plot of the amplitude spectrum of the simulations (solid line) and the measurements
(dash line) at Wa (left) and Wiz (right) as function of frequency [Hz]. The short and long wave
components become larger in the shallow area.

the Airy profiles (83) are obtained by minimizing the kinetic energy error [B.I7). The
plot of the kinetic energy error for the two vertical profiles as a function of v and s
is shown in the left plot of Figure B.I1] at the deep part of the water; the lowest value
produces the optimal values 11 and v5. For other depths the optimal values are shown
at the right.
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Figure 3.9: At the top and lower left are shown the measured time signals at W1 of the irregular
waves, and at the lower right the amplitude spectrum (of the total time signal) as a function of
frequency [Hz].
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Figure 3.10: The amplitude spectrum (solid line, left hand axis) of the irregular waves is plotted
together with the group welocity error (solid line with plus sign, right hand azis) and the phase
velocity error (solid line with diamond, right hand azxis) as functions of frequency [Hz] above the
depth h = 30m. At the left for the OVBM case with one vertical with calculated optimal value
v = 0.84 (corresponds to 0.133Hz), at the right for two vertical profiles with calculated optimal
values v1 = 0.77 and v = 1.59 (corresponds to 0.122Hz and 0.253Hz).
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Figure 3.11: At the left the plot of the kinetic energy error (Kypm — Kez) as function of v1
and vo for h = 30m, and at the right the optimal v1 (dashed line) and v2 (solid line) for each
depth above the slope.

As in the previous case, the signals of the simulation at positions Ws, Wia, Wi5, and
Wi are compared with the measurements in Figure[3I2]and 313l The phasing and form
of the simulated and measured waves agree quite well even after 10000s of simulation.
Spectra of the simulation and measurement are compared at each position, shown at
the right part of Figure Comparing the long and short wave components in the
spectrum, the simulation of nonlinear effects seems to be quite accurate.

In Figure B.I4 we show the curves of maximal and minimal temporal amplitude
(MTA) (after 3.5hr of simulation) which are the highest and lowest points in the full
time trace at each position. In the same figure, we also show a snapshot of the spatial
wave profile at ¢t = 1999s. As can be seen, at this time near position x = 5106m appears
a very high wave.



3.4 Numerical simulations

57

Surface elevation at W15 [m] Surface elevation at W12 [m] Surface elevation at W2 [m]

Surface elevation at W17 [m]
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compared at positions Wa (first row), Wiz (second row), Wis (third row), and Wiz (fourth row).

3.4.4 Correlation and variance-quotient

Besides comparing the plots of the signals and their amplitude spectra, we will now quan-
tify the relation between the simulation and measurement by calculating the correlation



58 Optimized Variational 1D Boussinesq modelling

0.04r 9
0.0351 9
0.03r 9
|%0.025 r 9
0.021 1
0.0151 1
0.01p 1

Surface elevation at W2 [m]

0.005 1

1.08 1.085 1.09 1.095 11 0 01

0.2 0.3 0.4
t[s] « 10° f[Hz]

0.04 4
0.035 9
0.03 9
@0.025 9
0.02 1
0.015 1
0.01 1

Surface elevation at W12 [m]

0.005 1

1.16 1.165 1.17 1.175 0 01

0.2 0.3 0.4
t[s] « 10° f[Hz]

0.04r
0.035¢
0.03r
@OAOZS
0.02r
0.015¢
0.01r

Surface elevation at W15 [m]

0.0051

1.165 1.17 1.175 1.18 o 01

0.2 0.3 0.4
t[s] x 10" f[Hz]

0.04r
0.035¢
0.03r
§0A025’
0.02r
0.015¢
0.01r

Surface elevation at W17 [m]

0.005,

1.168 1.17 1.172 1.174 1.176 1.178 1.18 1.182 (o) 0.1

0.2 0.3 0.4
t[s] x 10" f[Hz]

Figure 3.13: The simulated (solid line) and measured (dashed line) signals of irreqular waves
at the left, and the comparison of the amplitude spectrum at the right at positions Wa (first row),
Wiz (second row), Wis (third row), and Wiz (fourth row) after 10000s of simulation.

and variance-quotient; these are defined by

. < 51 (t),Sg (f,) >
corr(Sy, Se) = S (19 @] (3.23)

1S1(t)|?
VQ(Sy, 8y) = 21 3.24
Q( ) 520 (3.24)
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Figure 3.14: MTA curves of mazimal (upper curve) and minimal (lower curve) temporal am-
plitude (denoted by dot dashed line) after 3.5hr of simulation and a snapshot of the propagating
wave (denoted by solid line) at t = 1999s for the irregular waves.

Position | BC (1-profile) | Irr (1-profile) | Irr (2-profiles) | Irr (ABvar)

corr | V@ corr | V@ corr | V@Q corr | V@
Wy 0.98 | 0.99 0.86 | 1.02 0.90 | 1.02 0.96 | 1.05
Wia 0.84 | 1.04 0.29 | 1.05 0.62 | 1.04 0.72 | 1.13
Wis 0.96 | 0.94 0.66 | 1.00 0.86 | 0.99 0.93 | 1.00
Wir 0.95 | 0.91 0.64 | 1.03 0.85 | 1.02 0.92 | 1.03

Table 3.1: Comparison of correlation (corr) and variance-quotient (VQ) for the bichromatic
(BC) and the irregular (Irr) wave for one and two vertical profiles OVBM and the ABvar model.

respectively, where Sp (t) and Sy (t) are the signals to be compared, < -,- > represents
the L-inner product, and |-| the L?—norm. Note that corr (S;,Ss) is a number between
—1 and 1, and has value one only when one signal is proportional to the other one;
hence, this quantity will in particular given an indication of the phase-errors between
the two signals. Note that we do mot apply any time shift to improve the correlation.
The variance-quotient gives an indication about the amplitude-errors between the two
signals.

In Table Bl we present the values as calculated at the measurement positions for
1hr of simulations. We observe that for the bichromatic wave the simulation with one
vertical profile gives very good correlation and variance-quotient values. For the irregular
wave, the model with two vertical profiles gives much better correlation values compared
to the one vertical profile model.

In Table Bl we also show the correlation and variance-quotient of simulation of
irregular wave by another code which is based on the AB-equation of van Groesen and
Andonowati . The ABvar-equation is a uni-directional model for uneven bottom
with exact dispersion in first and second order, see van Groesen and van der Kroon M]
for more details of that simulations.

Note that at position Wi, both cases and models give lower correlation compared to
the other positions. This is difficult to explain, since a gradual decrease of correlation
in downstream direction would be expected, while at the shallow area Wi5 and Wi the
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correlation values are higher.

3.5 Conclusion and remarks

The numerical implementation of the OVB-model is remarkably simple because the high-
est spatial derivatives are of second order and there are no mixed spatial-temporal deriva-
tives.

The simulations in the last section have shown that the use of multiple vertical profile
functions and the optimization procedure, can greatly enhance the quality of the simu-
lations. The number of profiles needed to get accurate results depends on the broadness
of the spectrum, and should be determined a priori. As shown, for the narrow band
bichromatic waves one profile was sufficient, for the broader 12s irregular waves we used
two profiles; to simulate shorter 9s period irregular waves (not reported here), we needed
3 profiles.

The flexibility to choose the number of vertical profile functions and the possibility
to optimize the vertical profile functions means that our model is case-dependent. This
may seem impractical, but allows us to obtain depending on the input signal (or initial
elevation) the best possible dispersion properties over the regime wavenumber interval.
Hence, there is no fixed limit for relative depth kh as is the case for other Boussinesq
models with dispersion that is derived from a rational asymptotic perturbation scheme.

Figure .11l shows that above varying bottom the optimized values of the parameters
change substantially; as has been remarked, the use of the initial spectrum in the kinetic
energy functional (BI5) is only approximate since, in fact, the spectrum will change with
depth. This is still a topic of possible improvement.

The comparison in section[3.4]of the simulations with real-live measurements deserves
some comments. Since a series of field data are difficult to obtain (and will contain 2HD
pertubations), the scaled accurate measurements of MARIN have been used. Differences
between the simulations and the measurements will be partly due to the imperfection
of the simulation model. But a part can also be caused by reflections that have not
been modeled, in particular reflections from the artificial beach and the end wall of the
laboratory wave tank. These reflections, and just as well as the reflections from the
slope, are included in the measured elevation at the point of influxing and will therefore
perturb the influx signal. Such pertubations will contribute to the decreasing correlation
downstream over a length of approximately 40 wave lengths.

The numerical code, programmed in MATLAB, is quite efficient; the computation
time for the simulation of the bichromatic case with one vertical profile took 38% of the
experiment time, while for the irregular waves with two vertical profiles it took 117% of
the experiment time, for calculations done with a PC with 3GHz Intel dual core processor
and 4GB of RAM.

The results of the second test case, the irregular waves, have been presented in a
”Benchmark workshop on numerical wave modelling” on November 25, 2010, held at
MARIN. In the benchmark the challenge for widely invited participants was to show their
simulation at the downstream positions W5 and further, using the provided experimental
data of the wave maker motion and the elevation measurement at ;. Besides results
of the OVBM code presented here, only results of the ABvar-code van Groesen and van
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der Kroon M] were presented.

The extension of the model to 2D has been developed in Klopman et all HZJ)D_ZH for the
spectral-implementation and in [Adytia and van Groesernl ﬂ20_]_1|] for the Finite Element-
implementation. In these papers, the 2D VBM is tested to simulate the experiment
of Berkhoff et all ﬂl})ﬁﬂ] This experiment illustrates the accuracy of wave refraction,
diffraction and shoaling over a complex bathymetry. The comparison between the model
and measurements shows a good agreement. Moreover, the codes show a robustness for
dealing with such a complex bathymetry.

Appendix 3.A

Using the notation £ = h + 7, the explicit expression for the coefficients «, ~, and § in
) are given for i = j by

3 7
aiz‘("‘ii) — —2—/% tanh(l‘dz‘f) + ﬁhi(ﬂf) +¢£
oy _ kitanh(ki§) A
Yii (ki) = D) 2 cosh? (k;€)
Bi(ki) = tarﬂ;ﬂ —¢

and for i # j by

sinh ((k; + K;) &) sinh ((k; — Kj) &)
(Ki + K5) (ki — Kj)
— (1/ki + 1/k;) sinh ((k; + K;) &)
+ (1/k; — 1/kj) sinh ((k; — K4) &) + &[cosh ((k; + K;) &)
+ cosh ((k; — K;) §)]}/2 cosh (k;€) cosh (k;€)

ij (Kis k5) ={

_ Kikj sinh (ki + ;) §)  sinh (ki — K5) &)
2 cosh (k;€) cosh (k2€) (ki + Kj) (ki — Kj)

Yij (/% fij)






Chapter

The Variational 2D Boussinesq
model for wave propagation
over a shoa

Summary

The Variational Boussinesq Model (VBM) for waves (see e.g. [Klopman et all [2010])
is based on the Hamiltonian structure of gravity surface waves. In its approximation,
the fluid potential in the kinetic energy is approximated by the sum of its value at
the free surface and a linear combination of vertical profiles with horizontal spatially
dependent functions as coeflicients. The vertical profiles are chosen a priori and determine
completely the dispersive property of the model. For coastal applications, the 1D version
of the model has been implemented in a Finite Element(FE)-code with piecewise linear
basis functions. Results of simulations have been been compared with experiments from
MARIN hydrodynamic laboratory for a focusing wave group running above a flat bottom

i [2012]) and for irregular waves running above a
sloping bottom (this thesis, Chapter 3). The 2D version of the model has been derived and
implemented using a pseudo-spectral method with a rectangular grid in
ﬂm, m A limitation of the later implementation is a lack of flexibility when the
model deals with a complicated domain such as a harbour. Here, we will present an
implementation of the model in a 2D FE-code which is consistent with the derivation of
the model via the variational formulation. To illustrate the accuracy of wave refraction
and diffraction over a complex bathymetry, the experiment of [Berkhoff et all ﬂl%j] is
used to compare the FE results with measurements.

IThis chapter is a slight extension of the published paper : D. Adytia and E. Van Groesen, The
variational 2D Boussinesq model for wave propagation over a shoal, International Conference on De-
velopments in Marine CFD, November 2011, Chennai, India. RINA. ISBN No. 978-1-905040-92-6,
p-25-29.
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4.1 Introduction

For coastal zone applications such as simulations of coastal waves in a harbour, besides
the mild-slope equations, Boussinesq-type of equations have been favorite because of
the ability to represent the physical phenomena of water waves such as non-linearity,
dispersion and bathymetric effects. The standard Boussinesq equations which include
the effect of bathymetry were first derived by m, who used depth averaged
velocity as dependent variable. But this model is restricted to shallow water because of its
rather poor dispersion characteristics in intermediate and deep water. Since then, there
have been many works to improve the dispersion quality of Boussinesq-type equations,
e.g. Madsen and Serensen [1992] and Nwogu [1993)].

In order to achieve good dispersive characteristics, many of these Boussinesq-type
equations include high order spatial (or mixed with time) derivatives; this makes them
rather difficult for numerical implementations and for practical applications. In this
Chapter, we will use a Boussinesq-type of equation that is derived from a variational
formulation. This will lead to a system of equations with a much simpler numerical
implementation since it only contains second order spatial derivatives without mixed
time-space derivatives. In Section 2] we derive the 2D version of this model. Section
describes the Finite Element implementation of the model and in Section the
performance of this implementation is tested for the experiment of Berkhoff et all ﬂl%ﬂ]
Section [£4] provides conclusions of this Chapter.

4.2 Variational Boussinesq Model

4.2.1 Variational formulation for VBM
The variational principle for water waves was introduced by Luke in [Lu Lukd M] Re-

lated to the Hamiltonian equations in [Zakharoy [1968], Broer [1974], Miled [1977], the

Lagrangian £ in Luke’s variational principle, which depend on fluid potential in the in-
terior @ (x, z,t) and surface elevation 7 (x,t), can be reformulated in canonical variables
at the free surface. These are the surface elevation n and the fluid potential at the free

surface ¢ (x,t) as
L= / [/ pOyndx — H (n,cﬁ)} dt (4.1)

Here H is the Hamiltonian or the total energy, which is the sum of the kinetic energy
and the potential energy that are defined as

1 K 1
K = 5 // |V3®|* dzdx  and P = 3 /gnde
zJ—h z

respectively, and h (x) describes the bottom. By taking variations with respect to 7 and
¢, the Hamiltonian equations are found

On =06H and 0ip = —6,H

where d4H and 6,H denote the variational derivatives of H with respect to n and ¢.
The exact formulation will be obtained if we could assure that the potential velocity
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d satisfies the Laplace equation in the interior, the impermeability condition at the
bottom and the condition ® = ¢ at the free surface. The main difficulty in water
wave modeling arises from the need to approximate the kinetic energy explicitly in the
surface variables. Nevertheless, after finding an approximation for the kinetic energy,
following the variational steps above, we obtain a consistent approximation that keeps
the consequences of the Hamiltonian form, such as energy conservation.

As described in [Klopman et al) HZJ)DH, 2007, mﬂ], Lakhturov et all M and Adytia
and van Groesen m, the VBM is obtained by approximating the vertical structure of
the fluid velocity ® in the expression of K with its value at the surface ¢ and multiple
expansion terms as

(I)(Xazat):¢(X7t)+ZmFm(Z)w(X7t):¢+F'\I’

where F' and ¥ are vector functions. In order to keep the canonical structure of the
Hamiltonian, the condition ® = ¢ at the free surface has to be assured. As consequence,
it is required that F,,, (z = n) = 0. The vertical profile function F,, (z) has to be chosen
in advance, while 1, (z) are functions that have to satisfy an optimality condition of
vanishing of the kinetic energy with respect to variations in 1,,. Such variations lead to
a system of linear elliptic equations that has to be solved together with the dynamics for
the variables 7 and ¢. By substituting the approximation of ® into K, we obtain the
kinetic energy of VBM

Kp

n
%// |V¢+V(F'\I/)|2+(3ZF-\I/)2dzdx
xJ—h

Q

1 n
5// Vo + F - VU + (8. F - ¥)° dzdx
xJ—h

%/ [(h—f—n)|V¢|2+2V¢B-V\I/+V\II-QV\II+\II-'y\Il}dx

In the second line, we use a weakly-nonlinear approximation (see Klopman et _all ﬂmﬂﬂ]
for details) where F' is assumed to be slowly varying with respect to n and h. In the last

expression, matrices o and -, and a vector 8 are introduced with elements given by
n n 7
ay= | RFds = [ orords si- [ R
—h —h —h

By substituting the expression of the kinetic energy above into the Lagrangian (1), we
obtain

c- / [ / bOundx — Hy (1, wm)] dt (4.2)

where H; is the Hamiltonian for the VBM. Taking variations with respect to 7, ¢ and
m, we obtain a system of PDE

O =—=V-[(h+n) Ve =V -[3-VY]

0o = —gn—|Ve|* /2 (4.3)
—V - [aVT] +4T¥ = V- [V
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The dispersive quality of the system above is highly determined by the choice of the

vertical profile functions F, (z). In Klopman et all [2010], it was suggested to choose
a parabolic profile for rather long waves, or a cosine hyperbolic profile that is obtained

from Airy’s linear potential theory :

F (z;m,h) = cosh (k (24 h)) /cosh (k (n+ h)) — 1; (4.4)

F has exact phase and group velocity (only) for the wave with wavenumber . For peri-
odic waves, the latter profile is the best choice, since we can choose x as the wavenumber
of the waves to be simulated. For broad spectra such as for focusing wave groups and
irregular (coastal) waves, the optimal choice of k for the Airy profiles above can be ob-
tained by minimizing the kinetic energy functional for a given initial influx signal as

described in [Lakhturov et al! [2012] and [Adytia and van Groesen [2012].

4.2.2 Finite Element Implementation

The VBM is obtained from a variational formulation by minimizing the Lagrangian of
VBM ([{2) with respect to 1, ¢ and t,,. For this reason, it is quite natural to implement
the VBM by using the Finite Element Method (FEM). Besides this, we can use piecewise
linear local basis functions since the highest derivatives in ([£2) are of first order. In this
implementation we discretize the solutions in space by using FEM which leads to a system
of ordinary differential equations (ODESs) that is solved using an explicit time integrator
such as a Runge-Kutta method.

We start the spatial discretization of the solutions 7, ¢ and 1, into 77,¢ and ¥ by using
standard 2D triangular basis functions T (x), then substitute them into the Lagrangian
of VBM (2). This leads to a Lagrangian with vector state variables

L= / (M- 047 —Hy (7, 6, ,,)] dt (4.5)
with )
ﬁb - 5

Here M is the so-called mass matriz with elements M, ; = [T} (x) T (x) dx, D and A
are so-called stiffness matrices with elements

1. — — = — - 1 - — 1 _— —
gMﬁ-ﬁ+§D¢-¢+H3(ﬁ,¢)+B-\Il+§A\I/-\II+§G\I/-\I/

D;; = /h (x) VT (x) - VTj (x)dx and A, ; = /a (x) VT; (x) - VT; (x) dx

respectively. G is the matrix with elements G;; = [ (x)T; (x)Tj (x)dx, B is the

column vector B = [B(81) ¢, -+, B (Bn1) ¢] with B(8;) = [ i (x) VT (x) - VT (x) dx,
and H3 (ﬁ, 5) is the nonlinear cubic term :

— 1
Hs(n,¢) = Ezi,j,km¢j¢kcijk
with Cyjx = [T;VT}; (x) - VI (x) dx. Now, from the Lagrangian (LX), we obtain the
Hamiltonian equations as the following matrix system
MOo7j = 05Hy, = D +b (7, ¢) + B (8) - ¥
M,b = —0zHy = —gMé — 7 (9) (4.6)
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and an additional matrix system of linear elliptic equations from (‘)aﬁb =0
[A+G]V=-B (4.7)

where b (ﬁ, 5) and 7 (5) are column vectors with elements

bj = 9y, Hz = Li k0t Cijr and v; =

— 1
Op, Hz = izi,j@%cijk

The algorithm to obtain numerical solutions for the system (£L8) and (1) by time
stepping can be described as follows. For given initial conditions 7 and ¢g, we calculate
1o by solving the elliptic system in ([@Z). Then by using the new 1;, we solve the
dynamic system in ([£0]) using a time integrator, a Runge-Kutta method (or ODEsolver
in MATLAB) to obtain new 7; and ¢;. These steps can be repeated until the desired
end-time. In the calculation of the elliptic system in (@), we use an iterative method,
i.e a preconditioned conjugate gradient method with a preconditioner obtained from an
incomplete Cholesky factorization. This iterative method only needs 1-4 steps since we
have an appropriate initial guess for ¢ from the previous time step. Besides that, the
matrices in ({0 and [@7) are very sparse since we use local basis functions for FEM, so
the calculation is quite efficient.

v [m]

"0 5 0 5 10
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3
Y
Shoal boundary:
xV 2 1 2
4 3
depth outside boundary:

h=0.45-0.02(5.84—")

Figure 4.1: Bottom configuration for the experiment of |Berkhoff et all M] Dashed lines
(labeled from 1 to 8) indicate sections where measurement data are available.
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Figure 4.2: Measured (upper left plot) and computed (upper right plot) amplitude contours
(solid lines). In the lower plot the average of the computed mazimal wave amplitude is shown.

4.3 Wave propagation over a shoal

To show the performance of the 2D implementation of the model above, we perform a
simulation of a monochromatic wave propagating above an elliptic shoal on a slope as in
the experiment of Berkhoff et al! [1982]. This case is often used to demonstrate the stabil-
ity, accuracy and efficiency of a model and its numerical implementation, since the waves

are affected by shoaling, refraction, diffraction and non-linearity (IKlr_b;Land_Dal]:;gm_pld

The laboratory setup for this experiment and the measurement sections are shown in
Figure[@Jl An elliptic shoal is placed above 1/50 sloping bottom and turned at an angle
20° with the z-axis. The thickness of the shoal is

d=—-03+ 0.5\/1 — (2'/5)% = (y//3.75)°

Monochromatic waves with period 1 s and amplitude 2.32 cm are generated at the
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Figure 4.3: Comparison of the measured (o o) and computed (-) normalized wave amplitude
in eight sections.

north boundary (y = 10) and propagate in the south direction. For the computation, the
west and east boundary conditions (at = —10 and = = 10) are set to be a fully reflective
wall, while at the south an absorbing boundary condition is implemented using a sponge
layer of 5 m wide. To influx a wave into the domain at the north boundary (y = 10),
we use internal wave generation with a spatial delta function and modified influx signal
with the group velocity of the model, similar with the method described in

. We use an unstructured triangular grid with grid spacing approximately 0.1 m.
The vertical profile function will depend on the depth h(x); the wave number k(h(x))
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of the Airy function ([@4)) is such that it corresponds to the (fixed) input frequency wy
(= 27/s) according to the VBM dispersion relation : Qypm (k(h), h) = wo.

In i [2011] the calculation was done for the linear version of
the model, in this chapter, we performed a simulation of the nonlinear version of the
model over a time interval of 50 wave periods without any stability problem. The wave
amplitude of the simulation is obtained by averaging the maximal amplitudes of the last
5 wave periods of the simulation (i.e. from ¢t = 45 s to t = 50 8). In Figure [£2] the
amplitude contours are given of the measurement (upper left part) and of the simulation
(upper right part). In the lower part the average of the maximal wave amplitude from
t =45 s to t = 50 s is shown.

Figure shows the comparison between computed and measured normalized wave
amplitude for the eight sections shown in Figure [Ll Figure shows that the model
can follow the diffraction pattern, including the refraction effect in the wave focusing
by the shoal. Figure shows that the agreement between the measurement and the
simulation is good.

4.4 Conclusions

Via the variational formulation of surface water waves, the VBM was derived by approx-
imating the kinetic energy using a space-dependent Airy function as vertical structure
in the fluid potential. The resulting system consists of two dynamic equations and an
additional linear elliptic equation. In contrast with other Boussinesg-type equations, the
system has no spatial derivatives of higher than second order, which allows for simple
numerical implementation. In this Chapter, the model has been implemented in a 2D
Finite Element (FE) method in a way that is consistent with the variational formulation.
This implementation has been tested to simulate the experiment of Berkhoff et. all [1982]
which represents the importance of diffraction, refraction and shoaling. Although nonlin-
earity is very important for the example that was given by [Kirby and Dalrymplé ﬂl%d],
using this code, we found very little difference between linear and nonlinear simulations.
The comparison between the model and measurements shows a good agreement.




Chapter

Coastal zone simulations in
Jakarta harbour

Summary

In this chapter, we show realistic and synthetic coastal zone simulations in Tanjung
Priok, the Harbour in Jakarta, Indonesia. To obtain a realistic wind wave condition, the
energy spectrum of waves are calculated by a phase-averaging model SWAN

) in a large domain of Indonesia. Simulations of SWAN are performed in several
nested areas, i.e. from a larger domain to the harbour. The resulting energy spectrum
from the SWAN simulation in the smallest nested area is taken as input signal (by
providing random phases) for the phase-resolving model: the OVBM. Since the peak
frequency of the spectrum in the entrances of the harbour is very small, i.e. Tpeqr =~ 3.5
s, the simulations with OVBM are performed with three (vertical) profiles. The dynamic
simulations in the harbour are investigated by analyzing the wave disturbances (the
quotient of the significant waveheight and the input significant waveheight) and signals
at several places in the inner harbour. As additions to the realistic simulation, synthetic
extreme cases are performed by taking several JONSWAP spectra with larger peak-
frequencies as input spectrum.

5.1 Introduction

A realistic wind wave condition in a coastal area such as a harbour, can be obtained by
predicting first the wind wave condition in a larger area where the waves are generated. In
this extensive area, the prediction is only practically possible in a phase-averaged sense.
In this sense, the energy spectra of the wave are modelled, while the phases are assumed
to be uniformly distributed. Over the last three decades, several phase-averaging models
have been developed, e.g. WAM (WAMDI group )7 WAVEWATCH III

[1991]) and SWAN (Booij et all [1999]). The present-day models are known as third-
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generation models in which the spectral action balance equation is solved without any
a priori restriction on the evolving spectrum during wave growth (see Section 6.4.7 of
Holthuijsen ﬂ21)1)_ﬂ] for the first-, second- and third-generation concepts). The WAM
and WAVEWATCH III models are primarily designed for deep water (oceanic scale),
whereas the SWAN model (acronym for Simulating WAves Nearshore) is an extension
of the deep water models to shallow water. The SWAN model incorporates formulations
for deep water processes of wave generation, dissipation and the quadruplet wave-wave
interactions from the WAM model (M) In shallow water, these processes are
supplemented by formulations for dissipation due to bottom friction, triad wave-wave
interactions and depth-induced breaking (Booij et all [1999)).

For our application in a coastal area such as a harbour, we choose the SWAN model
for providing the wave energy spectrum near the harbour. The resulting wave energy
spectrum near the harbour is then used as input signal (by providing random phases)
for simulations of our phase-resolving model OVBM. Results of SWAN simulations in
order to provide realistic wind wave condition in the Jakarta harbour are described in
the following section.

5.2 Simulations of SWAN

The spectral model SWAN requires a bathymetry (bottom topography) and wind data
as inputs for the simulations. The wind data is freely available from the National Centers
for Environmental Prediction (NCEP) of the National Oceanic & Atmospheric Adminis-
tration (NOAA). To obtain realistic wind wave conditions in the harbour of Jakarta, we
choose an extreme wind event in Indonesia on 14 January 2010 (west monsoon wind).
We perform stationary simulations of SWAN using a regular rectangular grid in 5 nested
areas in Indonesia. For the largest domain, zero initial and boundary conditions for the
spectral action balance equation are used. The resulting spectral wave conditions from
this domain are then used as initial conditions for the simulation in smaller domain.
This procedure is then repeated for the third, fourth and fifth nested domains. The sim-
ulations of SWAN that are shown here are performed in LabMath-Indonesia by Meirita
Ramdhani.
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Latitude []

-6.08

0.5

N
06.8 107 107.2 107.4

0.5

Jakarta Harbour

106.88 106.88 106.89 106.89 106.9 106.90 106.91 106.91 106.92
Longitude [°]

0.5

0



74 Coastal zone simulations in Jakarta harbour

7
6
5
= 4
o
k-l
2
£ 3
=
2
1
- o
108 110
Longitude [°]
7
5.2
6
5.3
54 5
=55
= 4
S 56
2
® 57 3
5.8
2
5.9
1
6.1 Java ‘ . e ‘ N
1056 1058 106 106.2 1064 1066 1068 107  107.2 107.4
Longitude [°]
7
-5.85 6
5
% -5.95 4
3
2
§ -6 3
2
Java 1
Jakarta Harbour °

' |
106.8 106.85 106.9 106.95 107
Longitude [°]

| |
106.7 106.75

6 4
5
= Jakarta Harbour 3
= P
g ‘ R
] g
ki 3 - 2

Jakarta Harbour

106.88 106.88 106.89 106.89 106.9 106.9 106.91 106.91 106.92
10686 10687 10688 10689 1069 10691 Longitude []
Longitude [°]

Figure 5.2: The mean wave period (indicated by colorbar, in seconds) from the stationary
simulations of SWAN in 5 nested areas in Indonesia. The resulting mean wave period in the
entrances of the Jakarta harbour is: T ~ 3.5 s.



5.2 Simulations of SWAN 75

0.07 3500
East gate
= = = West gate ||

3000

2500 East Gate
(-]

o
o
5

2000 Bathymetry

y [m]

0.03F 1500

Var density [m 2/Hz]

0.021 1000

0.01p

0
1 0 1000 2000 3000 4000 5000
X [m]

Normalized S (t)
Normalized S (t)

0 260 460 sl 660 860 1000 500 5‘10 5éO sl 53‘0 54‘10 550

t[s] t[s]
Figure 5.3: The variance density spectrum (corresponds to energy spectrum) at the west and
east gate of the Jakarta harbour are shown in the upper left plot. The upper right plot shows
the locations of the west and east gates in the harbour. Here, the colorbar (in meter) indicates

the bathymetry of the harbour. In the lower plots, the normalized time signal from the variance
density in the west gate are illustrated.

The simulations of SWAN provide several wind wave conditions as output:

i. The variance density spectrum (corresponds to the energy spectrum of the wave
by multiplying it with pg, where p is the mass density and g is the gravitational
acceleration),

ii. The significant waveheight,
iii. The mean wave period.

In Figure 51l the significant waveheight from the simulations of SWAN are shown
in 5 nested areas, and in Figure £.2] the mean wave period from the simulation. From
these figures, one can observe that the resulting wind wave condition at the harbour
of Jakarta is rather calm: significant waveheight of approximately 0.4 m and period of
3.5 s in the entrances of the harbour. The resulting 1D variance density spectra in the
entrances of the harbour are shown in the upper part of Figure To obtain signals
from this variance density spectra, we use random phases. In the lower part of Figure
B3l normalized signals (divided by half of the significant waveheight) of the west gate
spectrum is shown.
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Figure 5.4: The normalized energy spectrum (solid line, left hand axis) from the SWAN simu-
lation at the west gate of Jakarta harbour (h = 13.5 m) is plotted together with the group velocity
error (solid line with plus sign, right hand axis) and the phase velocity error (solid line with cir-
cle, right hand axis) as functions of frequency [Hz]. At the top left for the 1-profile OVBM with
Kk = 0.92 (corresponds to 0.48 Hz), at the top right for the 2-profile model with k1 = 0.21, ko =1
(corresponds to 0.23 Hz and 0.5 Hz) and at the lower for the 3-profile model with k1 = 0.22,
k2 = 0.63, k3 = 1.63 (corresponds to 0.23 Hz, 0.4 Hz and 0.63 Hz).

Now we use the resulting wind wave conditions, i.e. the energy spectrum and the
significant waveheight, at the entrances of the Jakarta harbour as input signals for the
OVBM. Simulations of the OVBM are described in the following section.

5.3 Simulations of OVBM

Simulations with OVBM will be performed in the interior of the harbour of Jakarta by
taking input signals (at the harbour entrances) from the SWAN simulations. Illustrations
of the input signals are shown in the lower part of Figure

As shown in Figure[5] the significant waveheight in the entrances of the Jakarta har-
bour (h = 13.5 m) from the SWAN simulations is 0.4 m, and the wavelength of the peak
waves of the spectrum in Figure[5.3]is very short, i.e. approximately 20 m. Therefore, we
use the linear version of the OVBM for the simulations. Note that this is indeed a deep
water situation in which the ratio of the depth and wavelength is h/\g > % Therefore
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Figure 5.5: [llustrations of the damping-zones, internal influzing line and an unstructured
triangular grid for numerical simulation of the OVBM. The actual used grid size for the OVBM
simulations is much finer than the illustration in this figure.

traditional Boussinesq-type models, e.g. [Peregrind [1967], Madsen and Serensen [1992]

and |Nw | will fail to simulate this type of waves due to lack of accuracy in
the dispersiveness. This also holds for the commercial software package MIKE 21 BW

, by DHI software), the VBM with parabolic profile and the OVBM with one
profile. The phase and group velocity errors of the OVBM with one, two and three pro-
files are plotted together with the spectrum from the SWAN simulation in Figure 5.4
These plots indicate that acceptable velocity errors are achieved by using three profiles:
then for f < 0.8 Hz the error in the group and phase velocity is less than 1% and 0.1%
respectively. We use three profiles to simulate the waves from the SWAN output. That
is why for efficiency in computation time of wave dynamics, we restricted the simulation
domain to the interior of the Jakarta harbour, and all waves outside the interesting area
are damped by using a damping-zone. The domain of computation and the locations for
damping-zones are illustrated in Figure Here, we use the internal influx lines for
wave generation (see Chapter [). These are placed at both entrances of the Jakarta har-
bour. The waves are influxed uniformly into the domain with the same directions as the
results of the SWAN, i.e. 34.5° (west gate) and 29.5° (east gate) counter clockwise from
the north direction. For the boundary in the inner harbour, we use the fully reflective
(hard wall) boundary conditions.
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Figure 5.6: Snapshots of the OVBM simulations with input spectrum from SWAN simulations
(Tpear = 3.5) at t = 1 min, 5 min and 12 min. After 12 minutes, the inner harbour is filled
with the waves.
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As mentioned in Chapter 2 we use the unstructured triangular grid for 2D OVBM
simulation. Since the expected waves will have rather short wavelength, we use a suffi-
ciently fine grid to simulate the waves accurately. The resulting unstructured triangular
grid has approximately 270.000 elements (triangles) and 135.000 nodes (points). An il-
lustration of the unstructured triangular grid is shown in Figure (.5, but the grid size
for the OVBM simulations is much finer that the illustration in this figure.

The simulations of OVBM with three profiles are performed for 40 minutes physical
time. The calculation time with three profiles takes 11 times of the physical time with a
PC with 2.7GHz Intel i7 processor and 16GB of RAM. Snapshots of the simulations at
t =1, 5 and 12 minutes are shown in Figure After 12 minutes, the inner harbour is
completely filled with the waves.

An interesting quantity to investigate for harbour simulations is the wave disturbance
in a harbour which is defined as

Hsig

Hsig,input

WD = x 100%

where H,j, is the significant waveheight at a point in the harbour and Hgig input is
the significant waveheight in the harbour entrance (significant waveheight of the influx
signal). This quantifies the harbour’s response with respect to waves that are influxed.
From this quantity, one can investigate and analyze which area in the harbour will have
the most significant disturbance.

Since the wave disturbance is a normalized significant waveheight, we compare the
wave disturbance of the OVBM simulation with the SWAN simulation. This comparison
is shown in Figure[5.7l In general, both results give the same behaviour. The differences
that can be observed are the effects of diffraction especially near the west and east
entrances of the harbour. The OVBM can simulate this physical aspect very well as
shown in Chapter @, while in SWAN, the diffraction is modelled in a restricted sense as
stated in Booij et all [1999] and in the Scientific and Technical Documentation of SWAN
Cycle 111 (M) SWAN cannot handle diffraction in a harbour or in front of reflecting
obstacles properly.

Other differences are the reflections that can be seen clearly in the OVBM simulation,
but cannot be observed in the SWAN simulation. Notice that, the OVBM does not
include the effect of bottom dissipation, while in the SWAN simulation this effect is
included. Since the waves are rather short (compared to the depth) in these simulations,
ie. h/X\g > %, this effect is very small and therefore can be neglected in these simulations
outside the shallow area near the harbour entrances.
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Figure 5.9: Signals (left part) and their corresponding normalized energy spectrum (right part)
at buoy positions: B1,Ba,--- , Bs as in Figure[.8.
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From the calculation of the wave disturbance, we detect the elevation signals from
the OVBM simulations at six (artificial) buoy positions. The location of these buoys is
illustrated in Figure B8 in Figure (.9 the signals and their corresponding normalized
energy spectrum are shown. As indicated in the wave disturbance plot, the most sig-
nificant disturbances are at positions B; and Bg. Locations where ships are docked in
the harbour for loading and unloading cargos, i.e. buoy positions Bs, Bz, By and By
are actually relatively calm. From the spectrum plots in the right part of Figure 5.9 at
six buoy positions, the extracted elevation signals have frequency less than 0.4 Hz. By
using three profiles model, as indicated in Figure 4] the velocity errors are less than
0.1% (phase velocity) and 1% (group velocity) until waves with frequency 0.8 Hz. So the
simulation with three profiles is definitely good and simulation with two profiles could
also have been used.

As addition to this realistic simulation, we will show synthetic extreme wave condi-
tions to investigate the wave disturbance in the Jakarta harbour.

5.4 Simulations with synthetic extreme wave condi-
tions

As shown in the previous section, realistic simulations in the Jakarta harbour that were
obtained by taking an extreme wind condition at west monsoon time, result in relatively
calm wave disturbances in the harbour. This is understandable, since the wind wave
conditions near the Jakarta harbour have relatively small significant waveheight (Hg;y =
0.4 m) and very short wave period (Tpeqr = 3.5 8).
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Figure 5.10: JONSWAP spectrum with peak period Tpear = 12 s,11 s and 10 s for extreme
cases in Jakarta harbour.

To investigate the harbour’s response for longer wave periods, synthetic extreme wind
wave conditions can be obtained by taking JONSWAP-type of spectra (Hasselmann et
al. @D with longer peak period, e.g. Tpear =7, 8,9, 10, 11 and 12 s. The formula
of JONSWAP (JOint North Sea WAve Project) spectra for peak wave-frequency fpeqr is
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given by

fpeak

Syon (f) = ag® (2m)~" f % exp H( / )] ¢

with

1 <f/fpeak_]->2 0.07, if f < fpear
a=exp|—=|—"— y 0= .
2 o 0.09, if f > fpeak7

o is a constant that is proportional to Hg;g, and is thus related to the wind speed and
fetch length, g is the gravitational acceleration and f is the wave frequency.

In this section, we perform simulations of OVBM by using the spectra illustrated in
Figure In this plot, the JONSWAP spectra are normalized by their values at peak
frequency. Since the peak period of the waves are rather long, simulations with one profile
is accurate enough (with velocity errors less than 1%). Here we use coarser grid than
in the previous section, i.e. an unstructured triangular grid with approximately 150.000
elements (triangles) and 75.000 nodes (points). The simulations are performed for 40
minutes physical time. The calculate time with one profile takes 4 times the physical
time.

Snapshots of the simulations with input from JONSWAP with Tjeqr =10 s at t =1,
5 and 9 minutes are shown in Figure .11l After 9 minutes, the inner harbour is filled
with the waves.

In Figure B12, the wave disturbance of the OVBM simulations with input from
JONSWAP spectrum with Tpeqr = 7, 8 and 9 s, and in Figure simulations with
Tpear = 10, 11 and 12 s are shown. Notice that the scales of colorbar in Figure [.12] and
B3 are different than in Figure[2.7l Figure[pI2and B I3 show that the wave disturbance
for waves with longer periods (therefore more energy) are much bigger. Since longer
wave periods correspond to longer wavelengths, the effect of the bathymetry in these
simulations is much bigger than for the realistic case in the previous section.
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Figure 5.11: Snapshots of the OVBM simulations with input signal from JONSWAP spectrum
with Tpear = 10 s at t =1 min, 5 min, and 9 min.
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5.5 Conclusions

Realistic simulations in the harbour of Jakarta, Indonesia, has been performed by using
the spectral wave model SWAN and the phase-resolving model OVBM. The results of
simulations show calm wind wave conditions with significant waveheight 0.4 m and mean
wave period 3.5 s in the entrances of the harbour. Validations of the model simulations
are limited by lack of measurement data in the inner harbour of Jakarta. But, from the
comparison of wave disturbance, both models show (in general) similar behaviour, except
for diffraction effects in which the SWAN model is limited.

Results of the simulations with input from JONSWAP spectrum Tpeqr =78, 85, -,
12 s, show much larger wave disturbance in the harbour. In particular, since the waves
have longer wavelength, effects of the bathymetry are clearly seen in the west entrances
and other shallow areas in the inner harbour.






Chapter

Conclusions and Outlook

6.1 Conclusions

In the earlier development of the VBM (Klopman et all HZJ)DH, mﬂ_ﬁ, 2010 ), one profile

is used to approximate the depth dependence of the fluid velocity potential, either using
a parabolic profile (inspirated by the parabolic shape function of the classical Boussinesq
equations) or the Airy profile (based on the Airy linear theory). The VBM with parabolic
profile performs well for relative water depth kh < 7, i.e. for wavelengths in excess of
twice the water depth h (see ) and has the same the dispersion relation
characteristics as the enhanced Boussinesq model of [Madsen and Serensenl [1992] (see
Figure [[2]). The VBM with one Airy profile can be tuned, through its parameter s, to
have exact dispersion for a certain wavenumber at a certain depth. The applicability of
the earlier model is limited to rather long waves, e.g. tsunami waves, and rather narrow
band waves. The earlier model has been used for tsunami simulations: ,
van Groesen et all HZJ)DS] and |Adytia and van Groeserl ﬂﬂlﬁ]

For dealing with broad-band waves such as wind-generated waves, the quality of dis-
persiveness of the VBM needs to be improved. In this thesis, for signalling problems, the
improvement is achieved by using a few Airy profiles (up to three profiles), and since each
Airy profile is a function of a wavenumber k, the choices of the x’s is obtained by defin-
ing an optimization criterion for a given influx signal. The optimization criterion that is
used in this thesis is based on the idea introduced in i

for varying bottom. In this criterion, the kinetic energy is rewritten in a form that
incorporates the initial power spectrum of the given initial signal. The error in the kinetic
energy of the VBM compared to the least value which is achieved for exact dispersion,
is minimized with respect to the wavenumbers k. The resulting model is called the
Optimized VBM (OVBM). The flexibility to choose the number of vertical profiles and
the possibility to optimize the vertical profiles means that the OVBM is case-dependent.
This is different than other Boussinesqg-type models where the quality of dispersiveness
is measured by the largest relative water depth kh (given a certain accuracy) that can be
achieved. This then holds for any simulation in this interval. In the OVBM, instead of
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achieving a larger value of kh for all kind of wave motions, the dispersion is optimized to
give the highest desired accuracy in dispersiveness for the specific waves to be simulated
for a given signal.

In the previous variant of the VBM (Klopman et all [2005, 2007, [2010]), the model
was implemented with a pseudo-spectral method on rectangular grids. A limitation
of this implementation is a lack of flexibility when dealing with complicated domains
such as harbours or complicated coastlines. In this thesis, supported by the fact that
the VBM is derived using the variational formulation, it is chosen to implement the
model with a Finite Element Method (FEM). The implementation is straightforward and
simple, i.e. the use of linear spline basis functions is possible since the model has highest
spatial derivatives of second order in the equations (and of first order in the Lagrangian
form) and has no mixed spatial-temporal derivatives. Moreover, the use of unstructured
triangular grids in 2D FE implementations increases the efficiency in computation and
gives more flexibility compared to, e.g. curvilinear meshes and nested grids. The use
of FE implementation for the OVBM has broaden the applicability compared to the
previous variant of VBM d@m@ﬁﬂ M])

Compared to other Boussinesq models, the VBM has positive Hamiltonian (see Klop-
man et al. M]) and is relatively simple for numerical implementation. As a drawback,
an additional linear elliptic system has to be solved. But because of the positivity of the
Hamiltonian and symmetry of the associated matrices in the elliptic system, for a large
system with fine discretization, an iterative preconditioned conjugate gradient method
has been used to solve the elliptic system. This step contributes 20% to 40% to the total
computing time. This relatively low percentage can be achieved since a good initial guess
is available from the previous time steps.

The efficiency and accuracy of the 1D FE implementation of OVBM for simulating
broad band waves have been shown in Chapters[land[Bl The use of 2- and 3-Airy profile
and the optimization criterion for the vertical profile improves significantly the quality
of the dispersiveness of the OVBM. Results of simulations and laboratory experiments
agree very well. In general, for the 1D-FE code, the calculation time for the OVBM with
two profiles takes 1.5 times longer than using one profile, and approximately the same for
the OVBM with three profiles: 1.5 times longer than with two profiles. The calculation
with three profiles is only necessary for very short and very broad band spectra waves as
shown in Chapter [l for the freak wave experiment of MARIN hydrodynamic laboratory.
But for wind-generated waves (with JONSWAP-type of spectra), the calculation with
two (vertical) profiles is usually accurate enough.

The performance of the 2D FE code has been shown for the experiment of Berkhoff et
al. @] This experiment is well known to test the accuracy of a code in representing
effects of refraction, diffraction and shoaling. In Chapter M it is shown that results
of simulations of the 2D FE code and the laboratory experiment agree very well. In
Chapter [l the 2D FE code of OVBM is tested for simulating realistic wind-generated
waves in the harbour of Jakarta, Indonesia. Realistic wind-wave conditions are obtained
by performing simulations of a phase-averaged model SWAN in a large area of Indonesia.
Realistic wind wave conditions in the harbour produce relatively calm waves, even for an
extreme wave condition as on 14 January 2010: waves with significant waveheight of 0.4
m and mean wave period of 3.5 s were calculated at the entrances of the harbour. Since
the waves have short period, we performed the OVBM simulations with three profiles.
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Validations of the model simulations are limited by lack of measurement data in the inner
harbour of Jakarta. But, from comparison of the wave disturbance, results of simulations
of SWAN and OVBM show similar behaviour, except for diffraction effects in which the
SWAN model is limited.

6.2 Outlook

Development of the OVBM is part of the ongoing research in the Department of Applied
Mathematics of University of Twente in collaboration with LabMath-Indonesia. Several
physical aspects will be addressed in the near future to improve the present model and
code.

From several comparisons with experimental data, the FE - code of OVBM performs
very well. As stated in Chapter[I], the focus of this thesis is to improve the accuracy of the
dispersion relation of the original variant of the VBM d@mumﬂ 12005, 12007, |2(Ld]),
and restricted to the weakly-nonlinear model (as defined inKlopman et all [2005]). From
several test cases that are shown in this thesis, the weakly-nonlinear version of the OVBM
is accurate enough to represent the nonlinearity of waves. But for dealing with very steep
waves, i.e. when V7 is not negligible, generalization of the model to a fully-nonlinear
model can be done by taking into account contributions of V7 in the approximate kinetic
energy. When needed, the model will be generalized to the fully nonlinear model.

To obtain more realistic simulations in a harbour, several physical aspects need to
be addressed: wave breaking and effects of bottom friction. Just as in other Boussinesq-
type models (Schiffer et all [1993], Karambas and Koutitad [1992]), wave breaking will
be included in the OVBM. Bottom friction becomes important as waves propagate into
very shallow area. This has been shown in the synthetic simulations of the 2D FE-code
in the harbour of Jakarta in Section [5.4] in Chapter Bl In plots of the wave disturbances
in Figure and [5.13], effects of bottom friction will change the behaviour of waves in
the shallow area near the entrances of the harbour.

As mentioned above, in the early development of the VBM, tsunami simulations were

performed in Indonesia’s area (Adytia [2008], van Groesen et all [2008] and Adytia and

van Groesen M]) Now we will show briefly a recent application of the 2D-code for
tsunami simulations in Indonesia (Adytia et all [2012]).

In the present day, to tackle the serious and multiple water problems in the Jakarta
area, one of various options is to built a ’Giant Sea Wall’ in the Jakarta Bay. In view of the
possibility that a tsunami may hit the Jakarta bay, the *future’ sea wall of Jakarta should
better be constructed in such a way that it can withstand a tsunami. To obtain a rough
indication of a possible tsunami in the Jakarta bay, we reconstructed the tsunami caused
by the Krakatau explosion in 1883. Since the initiation of a tsunami is the most crucial
element in tsunami modelling, any difference in the generation will cause differences
in the propagating waves. Recently, Maeno and Imamura ﬂ2Q1J.|] reconstructed the 1883
Krakatau tsunami where three types of generation mechanism are used: a pyroclastic flow
model, a caldera collapse model and a phreatomagmatic explosion model. After careful
consideration, it is concluded that one variant of pyroclastic flow gave the best match in
comparison with the measured signal at Batavia m M]) Since the pyroclastic
flow model is a two fluid model in which the pyroplastic flow acts as the generating force
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Figure 6.1: Artificial buoy locations in the Jakarta bay are shown in the left plot. In the right
plot, the mazimal and minimal wave elevations at the 8 positions.

for the nonlinear Shallow Water Equations (SWE) as the wave model, the generation
is quite complicated. Instead, we adopted the phreatomagmatic model as initiation for
the tsunami. By adjusting the wavelength (that corresponds to the spatial extent of the
tsunami) and amplitude of the initial condition of phreatomagmatic, we obtain a signal
that resembles reasonably the measured data in Batavia m M) Details of
the VBM simulations is given in [Adytia. et all ﬂ2_0_]_2] By using this initial condition, we
observe conditions in the Jakarta bay as shown in Figure A schematic drawing of
hypothetical sea wall in Jakarta bay is shown in left plot of Figure 6.1l and maximal and
minimal elevations at 8 (artificial) buoy locations are shown in the right plot.

In conclusion, to design such a sea wall, the designers should take into account the
effects of such tsunami waves in the Jakarta bay. For instance, one consequence of
an oblique collision against the wall is that, taking nonlinear effects into account, a
four-fold amplitude amplification may arise if the wall is smooth (see [Yeh et all m,

12000] and [Peterson et all [2003]). The design of a wall-form
that prevents a large amplification (and correspondingly huge forces on the wall) could
be an additional challenge.
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